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Abstract—Backing-out and heading-out maneuvers in 
perpendicular or angle parking lots are one of the most 
dangerous maneuvers, specially in cases where side 
parked cars block the driver view of the potential traffic 
flow. In this paper a new vision-based Advanced Driver 
Assistance System (ADAS) is proposed to automatically 
warn the driver in such scenarios. A monocular gray-
scale camera was installed at the back-right side of a vehi-

cle. A Finite State Machine (FSM) defined 
according to three CANBus variables and a 
manual signal provided by the user is used 
to handle the activation/deactivation of the 
detection module. The proposed oncoming 
traffic detection module computes spatio-
temporal images from a set of pre-defined 
scan-lines which are related to the position 
of the road. A novel spatio-temporal motion 
descriptor is proposed (STHOL) accounting 
for the number of lines, their orientation and 
length of the spatio-temporal images. Some 
parameters of the proposed descriptor are 

adapted for nighttime conditions. A Bayesian framework is 
then used to trigger the warning signal using multivari-
ate normal density functions. Experiments are conducted 
on image data captured from a vehicle parked at different 
locations of an urban environment, including both daytime 
and nighttime lighting conditions. We demonstrate that 
the proposed approach provides robust results maintain-
ing processing rates close to real time.
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Fig 1 Driver and camera Field of View (FOV) in countries with right-hand traffic. (a) Back-out perpendicular parking. (b) Back-out angle parking.  
(c) Heading-out perpendicular parking. (d) Heading-out angle parking.

I. Introduction

I
n the last years, a considerable number of research works 
and industrial developments on Intelligent Parking Assist 
Systems (IPAS) have been proposed, including both assis-
tance and automatic parking approaches. Most of these 

systems have been designed to assist the driver when park-
ing in parallel, perpendicular or angle parking lots. How-
ever, the development of intelligent systems designed to 
assist the driver when leaving the parking lots has been 
somewhat neglected in the literature.

The nature of parking assistance systems for entering 
a parking lot is different from that of parking assistance 
systems for backing-out manoeuvres. On the one hand, 
the main goal of IPAS that assist drivers when parking is 
to ease the maneuver avoiding small collisions, reducing 
car damage, and avoiding personal injuries. Although the 
number of injured people is not negligible at all (more than 
6.000 people are injured yearly by vehicles that are back-
ing up only in the United States [1]), the low speed of the 
vehicles involved in the accidents reduce the severity of the 
damage. On the other hand, leaving parking manoeuvres 
imply to enter an active traffic lane where vehicles move at 
a relative speed much higher than the speed of the vehicle 
that is leaving the parking lot. This situation can be par-
ticularly dangerous when the pull out manoeuvre has to 

be done blindly, since the driver does not have visibility of 
the oncoming traffic. In other words, the safety component 
of IPAS devised to assist the driver when leaving a parking 
space is much more relevant since the possible collisions 
may cause serious injuries and damages.

In this paper we present an extended version of our pre-
vious work [2] that includes experiments in nighttime con-
ditions. The new vision-based Advanced Driver Assistance 
System (ADAS) was designed to deal with scenarios like 
the ones depicted in Figs. 1(a)–1(d). We consider backing-
out or heading-out maneuvers in perpendicular or angle 
parking lots, in cases where side parked cars block the 
driver view of the potential traffic flow. In such scenarios 
the common recommendation can be simplified as mov-
ing slow looking at every direction, but it is not possible 
to avoid initiating the maneuver in blind conditions. We 
propose a vision-based solution using a camera located at 
the back-right side of the vehicle which captures images 
with a better Field of View (FOV) than the driver’s FOV (see 
Fig. 1). Note that the same solution can be easily extended 
for heading-out maneuvers by installing the camera at the 
front-left side of the vehicle.1

1In countries with left-hand traffic the cameras will be located at the 
backleft/front-right sides of the vehicle.
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We propose a probabilistic model 
of the spatio-temporal motion pat-
terns obtained from a set of virtual 
lines placed following the road loca-
tion. The spatio-temporal domain is 
analyzed by counting the number of 
lines and their length with respect 
to their orientations in an histogram 
of orientations that we denoted as 
Spatio-Temporal Histograms of Ori-
ented Lines (STHOL). The resulting feature vectors are 
modeled using a normalized multivariate Gaussian distri-
bution for two types of scenarios (classes): oncoming traffic 
and free road. Bayes decision theory is then used by means 
of discriminant functions based on the minimum error 
rate that assumes equal prior probabilities. Finally, if the 
p.d.f. of the oncoming traffic class is larger than free traffic 
class p.d.f, the system triggers a warning signal that alerts 
the driver of oncoming traffic.

The remainder of this paper is organized as follows: the 
state of the art is discussed in Section II. In Section III the 
general and global structure of the system is described. 
Section IV introduces the spatio-temporal detection model 
including the feature descriptor and the Bayesian decision 
scheme. Section V serves to evaluate the performance of the 
system in both daytime and nighttime conditions. Finally, 
in Section VI we present the conclusions and future work.

II. Related Work
A sizeable body of literature exists related to IPAS, including 
range sensor-based approaches [3], monocular-based sys-
tems [4], [5], and motion stereo-based proposals [6]. However 
all these systems propose target position-designation meth-
ods to assist the driver when parking or to perform automatic 
parking. The closest field related with our proposal can be 
found in the area of Blind Spot Detection systems (BSD) that 
monitor the road behind and next to the host vehicle, warn-
ing the driver when there are vehicles in the blind spot of the 
side-view. These systems are mainly based on the use of cam-
eras installed in the left and/or right door mirrors [7]. These 
systems can be utilized to assist the driver when leaving a 
parallel parking lot, but the position of the camera makes 
not possible to use BSD systems in the scenarios depicted in 
Fig. 1. In addition, BSD systems usually take advantage of the 
opposite direction between the implicit optical flow and the 
motion of the overtaking vehicles. This difference is not so 
evident in the scenarios used in this work.

Considering the recognition of vehicles in the context of 
ADAS, extensive literature is available for both forward and 
rear vehicle detection [8]. The FOV of the camera and the 
type of maneuver when leaving a perpendicular or angle 
parking (see Fig. 1) provide images similar to the ones used 
by rear vehicle detection systems [9]. Most of these systems 
follow a three-staged framework: Region-Of-Interest (ROI) 

generation (monocular or stereo [10]), classification and 
tracking. All these stages are needed since the system has 
to deal with a wide number of scenarios and driving condi-
tions. However, in the context of our application, the num-
ber of possible scenarios is much lower so we aim to devise 
a simpler system without this tree-staged scheme.

III. System Description
The proposed architecture of the system is composed of 
three main parts: camera, processor and CAN-Bus com-
munications. A gray-scale 640 # 480 resolution camera is 
used, with a focal length of 12.5 mm. A preliminary struc-
ture was used to install the camera at the back-right side 
of a vehicle. In the final system, the camera should be inte-
grated inside the vehicle bodywork. As can be observed in 
Figs. 2(a) and 2(b) the point of view of the camera is much 
better than the driver’s point of view.

The processor is a PC-based architecture that is con-
nected with both the camera and the CAN-Bus interface. 
From the CAN-Bus we obtain the following variables: steer-
ing angle, car speed and current gear. These variables are 
used to trigger the detection module on/off according to 
the Finite State Machine (FSM) described in Fig. 3. As can 
be observed the system has to be firstly activated by the 
user. Then the system waits until the car has been put into 
reverse gear and the detection module is then triggered 
on. The system stops if one of the following conditions are 
met: (1) vehicle speed is greater than 5 km/h or (2) steering 
angle is greater than 10 degrees with respect to the zero 
reference position or (3) reverse gear is deactivated.

(a) (b)

Fig 2 Driver and camera point of view. (a) Driver’s point of view.  
(b) Image captured by the camera.

The nature of parking assistance systems for entering a parking 
lot is different from that of parking assistance systems for 
backing-out manoeuvres.
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IV. Spatio-Temporal Detection Model
An overview of the proposed spatio-temporal detection 
model of the oncoming traffic is depicted in Fig. 4. Spatio-
temporal images are computed using a pre-defined grid 
of scan-lines which are related with the location of the 
road. These images are then analyzed using a line detec-
tion stage, which provides the lines, their orientation and 
length. This information is used to compute the so-called 
Spatio-Temporal Histograms of Oriented Lines (STHOL), 
which are the features used to represent the current 
state of the adjacent lane: oncoming traffic or free traffic. 
Finally, a Bayesian decision scheme is used to trigger the 
warning signal to the user, that can be a simple acoustic 

tone or a more sophisticated user 
interface.

The proposed approach can be 
used in either daytime and night-
time conditions. A specific module 
has been designed to assess the 
lighting conditions of the images 
captured by the camera. The differ-
ent lighting conditions are roughly 

divided in two modes of operation: daytime and nighttime. 
As in [11], the average intensity of the image and the density 
of gradients are used to decide when nighttime processing 
begins and daytime processing stops. The main differences 
between both modes are related with the set of parameters 
used in the line detection stage, and the definition of the 
likelihood functions used in the Bayesian decision scheme. 
Thus, we maintain the same structure for both daytime and 
nighttime scenarios, which constitutes a clear contribution 
since most of the vision-based vehicle detection systems 
clearly differ in their architecture depending on the light-
ing conditions [8], [11].

In the following, details of each one of the modules rep-
resented in Fig. 4 are given.

A. Spatio-Temporal Images
Vehicle detection proceeds with the 
computation of spatio-temporal im-
ages which represents a single inten-
sity scan-line collected over several 
frames. This approach was presented 
in [12] to perform crow detection in 
video sequences using a set of hori-
zontal scan-lines. In our case, the 
distribution of the scan-lines follows 
a pre-defined representation of the 
road using the flat world assumption, 
extrinsic parameters of the camera 
w.r.t. the road (obtained by means of 
an off-line  camera calibration pro-
cess) and a pre-defined grid which 
covers half of the road. The definition 
of the number of scan-lines and their 
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Fig 4 Overview of the spatio-temporal detection module.
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Fig 3 FSM for detection module.

Vehicle detection proceeds with the computation of spatio-
temporal images which represent a single intensity scan-line 
collected over several frames.
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distribution have been experimentally determined taking 
into account the maximum and minimum range, the orien-
tation of the camera as well as a trade-off between compu-
tation time and the density of information. Some examples 
are depicted in Figs. 5(a)–5(d) for both daytime and night-
time conditions. We can observe that only one half of the 
image is covered2.

For each scan-line we create a spatio-temporal image 
that contains that scan-line in the last 16 frames. The scan-
line from the last image is placed at the upper part of the 
spatio-temporal image and the rest of the scan-lines are 
shifted to the bottom. The orientation of each scan-line in 
the spatio-temporal image is defined as follows: the furthest/
closest point of each scan-line in the image plane is placed 
on the left/right side of the spatiotemporal image. As can be 
observed in Figs. 5(e)–5(h) the motion patterns showed by 
the spatio temporal images between the case of a vehicle 
approaching and no vehicle approaching are, at first glance, 
very different in both daytime and nighttime scenarios.

B. Feature Selection
Given a set of spatio-temporal images, a new descriptor is 
here introduced by counting the number of lines and their 
length with respect to their orientations in an histogram of 

2In countries with left-hand traffic the definition of the scan lines will be 
symmetric and located at the other side.

orientations that we denote as Spatio-Temporal Histograms 
of Oriented Lines (STHOL). Instead of using the Hough trans-
form as in [12], which in our case provides noisy results, we 
propose to use the approach suggested by [13]. The first step 
of the line detection is the computation of the image deriva-
tives using Sobel edge detector. Non-maximum suppression 
and hysteresis thresholding are then applied as defined by 
the Canny’s edge detector. Upper and lower thresholds are 
adapted depending on the lighting conditions (daytime/
nighttime). The gradient direction of the pixels that have been 
accepted as edges is then quantized into a set of k ranges (in 
our case, k 16= ) where all the edge pixels having an ori-
entation within the specific range fall into the correspond-
ing bin and will be properly labeled. The edge pixels having 
the same label are then grouped together using connected 
components algorithm. The line segment candidates are 
obtained by fitting a line parameterized by an angle i  and 
a distance from the origin t using the following expression:

	 .cos sinx yt i i= + � (1)

Each obtained connected component is a list of edge 
pixels ( , )u vi i  with similar gradient orientation, which is 
considered as the line support regions. The line param-
eters are then determined from the eigenvalues 1m  and 

2m  and eigenvectors v1v  and v2v  of the matrix D  associated 
with the line support region which is given by:

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig 5 Two examples of the scan-lines and spatio temporal images. Note that the size of the spatio-temporal images is different depending on the scan-
line. (a) Scan-lines with a vehicle in daytime. (b) Scan-lines with no vehicle in daytime. (c) Scan-lines with a vehicle in nighttime. (d) Scan-lines with no 
vehicle in nighttime. (e) Spatio-temporal images with a vehicle in daytime. (f) Spatio-temporal images with no vehicle in daytime. (g) Spatio-temporal 
images with a vehicle in nighttime. (h) Spatio-temporal images with no vehicle in nighttime.
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ented Lines (STHOL). An overview of the proposed archi-
tecture is depicted in Fig. 6.

C. Bayesian Decision Scheme
Given a particular image I that contains temporal informa-
tion of the last 16 frames, our aim is to estimate its pos-
terior probability, ( | )P I0~  with respect to the oncoming 
traffic class 0~ . To that extend, we represent the image 
I  in terms of STHOL features I{  and follow a Bayesian 
approach considering the free traffic class:

	 ( | ) ( | )
( | ) ( )

( | ) ( )
.P I P

p P
p P
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i I i i
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0 0

0
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0 0
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Although, it may be intuitive to consider the free traffic 
class to be more probable than the oncoming traffic class, 
priors for both oncoming traffic 0~  and free traffic 1~  class, 
( )P 0~  and ( )P 1~  are considered uniform and equal. This 

is an obvious simplification that could be overcome by, for 
example, modeling the priors using traffic data depending 
on the time and the global positioning where the vehicle 
is parked. We consider this interesting analysis out of the 
scope of this paper. Accordingly, since we manage equal  
priors, and the evidence ( | ) ( )p P

i I i i0

1
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=
/  is also com-

mon to both classes, our problem can be simplified by 
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where /x n x1
i i

=r ^ h/  and /y n y1 i i=r ^ h/  are the mid-
points of the line segment. The second eigenvalue of an 
ideal line should be zero. The quality of the lines fit is mod-
eled by the ratio of the two eigenvalues of matrix D , i.e., 

/1 2m m  Thus a second thresholding procedure is applied 
in order to reduce the noise of the measurements. The 
accepted lines will then correspond to clear edges. If the 
eigenvector v1v  is associated with the largest eigenvalue, 
the line parameters ( , )t i  are determined using:

	
( ), ( )

.
tan
cos sin

a v v
x y

2 2 11 1i

t i i

=

= +

v v
r r

^ h
� (3)

This procedure is applied on each one of the spatio-tem-
poral images, providing a set of lines with their orientation 
and length. Motion patterns corresponding to oncoming 
traffic yield a considerable number of lines with a specific 
orientation that clearly differs from cases without oncom-
ing vehicles for both daytime and nighttime scenarios (see 
Figs. 5(e)–5(h)). The number of lines detected on each spa-
tio-temporal image is then combined in an orientation his-
togram with d  bins evenly spaced over 0˚–180˚ (unsigned 
gradient, i.e., the sign of the line is ignored). To take into 
account the strength of each line, votes are directly related 
with the length of the line in the so-called Histograms of 
Oriented Lines (HOL). A similar approach was presented 
in [14] for rain/snow detection in the so-called Histograms 
of Oriented Streaks (HOS), including uncertainty on the 
estimation of the orientation of each streak.

Each image, which integrates information from the 
last 16 frames, provides a specific d -dimensional feature 
vector that accounts for the number of lines, their lengths 
and their orientation corresponding to the spatio-temporal 
images of all the pre-defined scan-lines. We have called 
this feature vector Spatio-Temporal Histograms of Ori-

0º 180º

Scan Line 0
Scan Line 1

Scan Line 19
Scan Line 20

Spatio-Temporal Images Line Detection Histograms of 
Oriented Lines

Spatio-Temporal Histograms 
of Oriented Lines (STHOL)

Fig 6 Overview of the STHOL feature selection architecture.

Fig 7 Sample images of the datasets. Upper row: daytime examples. 
Lower row: nighttime examples.
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estimating and evaluating the like-
lihoods ( | )p I i{ ~  which represent 
the probability of a particular obser-
vation (feature descriptor) given the 
traffic state of the lane (oncoming 
traffic or free traffic).

The following multivariate nor-
mal density function is used to 
model the likelihoods, ( | )p I i +{ ~

( , ):N i in R

	 ( | )
( ) | |

( ) ( ) ,expp x x
2

1
2
1

/ /I i d
i

i
t

i i2 1 2
1{ ~

r
n n

R
R= - - --8 B

� (5)

where x is the d -component feature descriptor (STHOL), 
in  is the d -component mean vector for class i~  and iR  is 

the d d#  covariance matrix corresponding to class .i~  The 
next parameters are then estimated using the training data: 
sample means 0n  and 1n  and sample covariance matrices 

0R  and 1R .
We finally use the minimum-error-rate classification 

using the discriminant function:

	 ( ) ( | ) ( ) .ln lng x p Pi I i i{ ~ ~= + � (6)

By merging Eq. 5 and Eq. 6 we have:
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Taking into account that we consider equal priors, and 
equal feature vector dimension for each class, the terms 
( / )lnd 2 2r  and ln ( )P i~  can be dropped from Eq. 7, giving 
the following discriminant function:

	 ( ) ( ) ( ) | | .lng x x x2
1

2
1

i i
t

i i i
1n nR R=- - - -- � (8)

Instead of using two discriminant functions g0  and ,g1  
and assigning I{  to 0~  if g g>0 1  we define a single dis-
criminant function ( ) ( ) ( )g x g x g x0 1= -  and we finally 
trigger the warning signal if ( ) .g x > THi

V. Experiments
The proposed oncoming vehicle detection approach to assist 
the driver when leaving a perpendicular or angle park-
ing was tested in experiments with data recorded from a 
real vehicle in real urban traffic conditions. Five different  

Daytime Nighttime

Training	 Test Training	 Test

# of images 16124	 6902 9914	 4830

# of free traffic images 12862	 4838 6597	 3166

# of oncoming traffic images 3262	 2064 3317	 1664

# of vehicle trajectories 34	 15 30	 14

Table 1. Statistics of the considered data sets.
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Fig 8 Mean value of the multivariate Gaussian and standard deviations (square root of the diagonal elements of the covariance matrix) corresponding to 
both oncoming traffic (blue) and free traffic (red) for (a) daytime and (b) nighttime scenarios.

Motion patterns corresponding to oncoming traffic yield a 
considerable number of lines with a specific orientation.
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locations have been used, including different levels of vis-
ibility due to the size of the side parked vehicles, different 
camera orientations and different lighting conditions. Data-
sets were acquired in both daytime and nighttime condi-
tions. Some examples of the different locations and lighting 
conditions contained in our dataset are depicted in Fig. 7.

The experimental data is firstly divided in two datas-
ets: daytime and nighttime datasets. Each dataset is then 
subdivided in other two datasets: one of them is utilized 
at a time to learn the probabilistic spatio-temporal model 
(training dataset). Performance is then evaluated in the 
remaining dataset (test dataset). To evaluate the quality 
of the proposed method, we have labeled all the images in 
two categories: oncoming traffic and free traffic. Note that 
vehicles that are out of the range of the vision system (50 
m with our current system configuration) were labeled as 
free traffic. Table 1 depicts the number of images of both 
daytime and nighttime datasets, including the number of 
images with free traffic conditions, the number of images 
with oncoming traffic as well as the number of vehicle tra-
jectories (one vehicle usually appears a number of frames 
which is directly related with its speed). In addition, sta-
tionary cars or vehicles moving in opposite direction 
both appearing inside the range area, are considered as 

free traffic. The proposed method 
should be able to distinguish these 
specific cases.

In our case the number of bins 
used in the STHOL features has 
been experimentally fixed to 36. 
The mean values of the multivari-
ate normal density function as well 

as their standard deviations (computed as the squared root 
of the diagonal elements of the covariance matrices) for 
both oncoming traffic and free traffic classes in daytime 
and nighttime conditions are depicted in Figs. 8(a) and 
8(b). As can be observed, the mean values of the multivari-
ate Gaussian modeling corresponding to the STHOL fea-
tures are very different for both oncoming and free traffic 
classes. The orientations of most of the lines when a vehi-
cle is approaching lie between 120°−180°. The STHOL fea-
tures in nighttime conditions follow the same distribution 
as in daytime conditions, but with lower histogram values 
(specially for the case of free traffic conditions).

The performance of the proposed classifier ensembles 
in terms of ROC curves are depicted in Fig. 9. These curves 
are obtained by varying the threshold value THi  of the 
discriminant function. The results correspond to single-
frame classification. Three curves are showed depending 
on the training and test data sets used in the experiments. 
As can be observed, for detection rates below 75% the 
nighttime test data set reports higher detection rates with 
lower false positive rates. This is mainly due to the fact that 
the STHOL descriptor for the case of free traffic conditions 
in nighttime produces a soft response with low histogram 
values, as depicted in Fig. 8(b). Accordingly, the number 
of false positives given by the classifier remains very low 
in comparison with daytime samples. It is remarkable the 
performance level obtained when classifying the night-
time test data set with the classifier trained with the day-
time training data set. This result proves the good behavior 
of the STHOL features for both daytime and nighttime sce-
narios, as well as the generalization capacity of the pro-
posed detection method.

After defining the operation point from ROC curves (the 
threshold value of the discriminant function) for both day-
time and nighttime stages, single-frame results are finally 
integrated in time, using a median filter that considers the 
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Fig 9 Receiver-Operating-Characteristic curves of the single frame 
Bayesian classifiers. We show both daytime and nighttime results, and 
the results of the classifier trained with the daytime training data set and 
tested with the nighttime test data set.

Daytime Nighttime

Detection rate 0.9596 0.7656

False positive rate 0.0830 0.0811

Accuracy 0.9350 0.8615

Table 2. Multi-frame detection results.

The STHOL descriptor for the case of free traffic conditions in 
nighttime produces a soft response with low histogram values.
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last five results. Thus, the system is able to deal with spuri-
ous errors, providing a more stable warning signal. Multi-
frame results are depicted in Table 2. Detection rate of the 
daytime detection scheme is increased by 17% for a false 
detection rate of 0.083 from single-frame to multi-frame, 
proving that a considerable number of errors are spurious. 
However that is not the case of nighttime results, in which 

detection rate is only improved by 1.3% for a false positive 
rate of 0.081.

In order to better show the real performance of the pro-
posed system, Figs. 10(a)–10(b) and 11(a)–11(b) depict the 
results (single-frame and multi-frame) compared with the 
ground truth for daytime and nighttime respectively. Test 
sequences have been merged in one sequence, although we 
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have split each sequence in two for visualization purposes. 
In addition, some examples of each sequence are over-
lapped for better understanding. Thus, in Fig. 10(a), the  
first example corresponds to a good detection. The second 
and third examples correspond to false positives due to near 
vehicles that finally did not follow the oncoming direction. 
Both examples of Fig. 10(b) depict correct oncoming traf-
fic detection. Considering nighttime results, in Fig. 11(a),  

the first and third examples correspond to false positives 
related with far vehicles that finally did change their direc-
tion. The problem here is that their headlamps produced 
overexposure as well as strong reflections of the road sur-
face. On the contrary, this effect produces anticipation in 
the warning signal in other cases, like the second example 
of Fig. 11(a). In other words, headlight reflections on the 
road means false positives but also true positives detected 
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at farther distances. In Fig. 11(b), first and third examples 
correspond to correct oncoming traffic scenarios. Second 
example can be considered here as the unique oncoming 
traffic situation that was not detected by our system. In this 
specific sequence a very small camera shutter was defined. 
As can be observed this configuration led to extremely 
poor visibility that did not generate contrast in the spatio-
temporal images, so that the STHOL descriptor obtained 
here was close to zero. Headlights are visible and gener-
ate contrast, but in this case the headlights did not pass 
through the grid of scan-lines. Obviously, this is not the 
optimal shutter configuration for our approach.

In order to provide a global evaluation of the detec-
tion performance of the system, we consider a good detec-
tion when the system warns the driver during a sufficient 
period of time (at least 2 seconds, i.e., around 40 consecu-
tive frames 3) when a vehicle is approaching. Accordingly, 
detection rate is 100%(15/15) and 93%(13/14) for daytime 
and nighttime conditions respectively. The false negative 
provided by the system (see Fig. 11(b)) was due to extreme 
underexposure conditions.

VI. Conclusion and Future Work
This paper presented a novel solution to a new type of ADAS 
to automatically warn the driver when backing-out in per-
pendicular or angle parking lots, specially in cases where 
side parked cars block the driver view of the potential traf-
fic flow. Up to now this is the first approach presented to 
deal with this specific problem.

The detection of oncoming traffic is handled by a FSM 
that includes the user activation as the starting point. A 
novel spatio-temporal motion descriptor is presented (Spa-
tio-Temporal Histograms of Oriented Lines—STHOL) to 
robustly represent oncoming traffic or free traffic states. 
Spatiotemporal images are obtained from a pre-defined 
grid of scanlines related with the road position. From each 
image lines are detected, including their orientation and 
length. A histogram of oriented lines is obtained from 
each spatio-temporal image, and the final STHOL descrip-
tor combines all the histograms. A Bayesian framework is 
finally used to trigger the warning signal.

The presented approach has been tested with data 
recorded in real traffic conditions in both daytime and 
nighttime. One of the main contributions is the use of the 
same architecture, independently of the lighting condi-
tions. Although some parameters of the system have to be 
adapted for nighttime scenarios, the classifier ensemble 
remains exactly as it is for daytime conditions.

Future work will be mainly addressed towards estab-
lishing a performance comparison between the proposed 
automatic warning system and human drivers. A consid-
erable improvement in the reaction time is expected. New 
experiments will be carried out comparing our generative 
approach with other discriminative approaches such as 

SVM-based or NN-based. Considering the STHOL feature 
vector, the use of the uncertainty on the estimation of line 
orientation as well as filtering approaches to compute a 
temporally smoothed model will be studied [14]. In addition, 
for cases in which global vehicle localization is available, a 
more sophisticated approach is being planned to model the 
priors using massive traffic data globally and temporally 
referenced, since it is obvious that the prior probability of 
meeting oncoming traffic depends on variables such as the 
time of the day, the type of road, etc. Finally, more experi-
mental work should be carried out including a more repre-
sentative data set, optimization procedures and different 
configurations of the STHOL feature descriptor.
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