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Abstract

Driver inattention is one of the major causes of traffic crashes, claiming thousands of lives
every year. Face tracking is one of the first stages in safety systems that relay on computer
vision to detect inattention. This paper describes an active model with a robust texture
model built on-line. The model uses one camera and it is able to operate without active
illumination. The texture model is defined by a series of clusters, which are built in a
video sequence using previously encountered samples. This model is used to search for
the corresponding element in the following frames. An on-line clustering method, named
leaderP is described and evaluated on an application of face tracking. A 20-point shape
model is used. This model is built offline, and a robust fitting fuction is used to restrict the
position of the points. Our proposal is to serve as one of the stages in a driver monitoring

system. To test it, a new set of sequences of drivers recorded outdoors and in a realistic
simulator has been compiled. Experimental results for typical outdoor driving scenarios,
with frequent head movement, turns and occlusions are presented. Our approach is tested
and compared with the Simultaneous Modeling and Tracking (SMAT) [1], and the recently
presented Stacked Trimmed Active Shape Model (STASM) [2], and shows better results
than SMAT and similar fitting error levels to STASM, with much faster execution times and
improved robustness.

Keywords: Face tracking, appearance modeling, incremental clustering, robust fitting,
driver monitoring

1. Introduction1

Driver inattention is a major cause of traffic accidents, and it has been found to be2

involved in some form in 80 percent of the crashes and 65 percent of the near crashes within3

3 seconds of the event [3]. Monitoring a driver to detect inattention is a complex problem4

that involves physiological and behavioural elements. Different works have been presented in5

recent years, focused mainly in drowsiness, with a broad range of techniques. Physiological6
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measurements such as electro-encephalography (EEG) [4] or electro-oculography (EOG),7

provide the best data for detection [4]. The problem with these techniques is that they are8

intrusive to the subject. Moreover, medical equipment is always expensive.9

Lateral position of the vehicle inside the lane, steering wheel movements and time-to-line10

crossing are commonly used, and some commercial systems have been developed [5, 6]. These11

techniques are not invasive, and to date they obtain the most reliable results. However, the12

measurements they use may not reflect behaviors such as the so-called micro-sleeps [7]. They13

also require a training period for each person, and thus are not applicable to the occasional14

driver.15

Drivers in fatigue exhibit changes in the way their eyes perform some actions, like moving16

or blinking. These actions are known as visual behaviors, and are readily observable in drowsy17

and dristracted drivers. Face pose [8] and gaze direction also contain information and have18

been used as another element of inattention detection systems [9]. Computer vision has19

been the tool of choice for many researchers to be used to monitor visual behaviours, as it20

is non-intrusive. Most systems use one or two cameras to track the head and eyes of the21

subject [10, 11, 12, 13, 14]. A few companies commercialize systems [15, 16] as accessories22

for installation in vehicles. These systems require user-specific calibration, and some of them23

use near-IR lighting, which is known to produce eye fatigue. Reliability of these systems is24

still not high enough for car companies to take on the responsibility of its production and25

possible liability in case of malfunctioning.26

Face location and tracking are the first processing stages of most computer vision systems27

for driver monitoring. Some of the most successful systems to date use near-IR active28

illumination [17, 18, 19], to simplify the detection of the eyes thanks to the bright pupil29

effect. Near-IR illumination is not as useful during the day because sunlight also has a30

near-IR component. As mentioned above, near-IR can produce eye fatigue and thus limits31

the amount of time these systems can be used on a person.32

Given the complexity of the problem, it has been divided in parts and in this work only33

the problem of face tracking is addressed.34

This paper presents a new active model with the texture model built incrementally. We35

use it to characterize and track the face in video sequences. The tracker can operate without36

active illumination. The texture model of the face is created online, and thus specific for each37

person without requiring a training phase. A new online clustering algorithm is described,38

and its performance compared with the method proposed in [1]. Two shape models, trained39

online and off-line, are compared. This paper also presents a new video sequence database,40

recorded in a car moving outdoors and in a simulator. The database is used to assess41

the performance of the proposed face tracking method in the challenging environment a42

driver monitoring application would meet. No evaluations of face pose estimation and driver43

inattention detection are performed.44

The rest of the paper is structured as follows. Section 2 presents a few remarkable45

works in face tracking in the literature that are related to our proposal. Section 3 describes46

our approach. Section 4 describes the video dataset used for performance evaluation, and47

experimental results. This paper closes with conclusions and future work.48
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2. Background49

Human face tracking is a broad field in computing research [20], and a myriad of tech-50

niques have been developed in the last decades. It is of the greatest interest, as vast amounts51

of information are contained in face features, movements and gestures, which are constantly52

used for human communication. Systems that work on such data often use face track-53

ing [21, 22].54

Non-rigid object tracking has been a major focus of research in latter years, and general55

purpose template-based trackers have been used to track faces in the literature with success.56

Several efficient approaches have been presented [23, 24, 25, 26].57

Statistical models have been used for face modeling and tracking. Active Shape Mod-58

els [27] (ASM) are similar to the active contours (snakes), but include constraints from a59

Point Distribution Model (PDM) [28] computed in advance from a training set. Advances in60

late years have increased their robustness and precision to remarkable levels (STASM,[2]).61

Extensions of ASM that include modeling of texture have been presented, of which Active62

Appearance Models (AAMs) [29] are arguably the best known. Active Appearance Models63

are global models in the sense that the minimization is performed over all pixels that fall64

inside the mesh defined by the mean of the PDM. All these models have an offline training65

phase, which require comprehensive training sets so they can generalize properly to unseen66

instances of the object. This is time consuming process, and there is still the risk that67

perfectly valid instances of the object would not be modeled correctly.68

Several methods that work without a priori models have been presented in the literature.69

Most of them focus on patch tracking on a video sequence. The classic approach is to use70

the image patch extracted on the first frame of the sequence to search for similar patches71

on the following frames. Lukas-Kanade method [30] was one of the first proposed solutions72

and it is still widely used. Jepson et al. [31] presented a system with appearance model73

based on three components: a stable component that is learned over a long period based on74

wavelets, a 2-frame tracker and an outlier rejection process. Yin and Collins [32] build an75

adaptive view-dependent appearance model on-line. The model is made of patches selected76

around Harris corners. Model and target patches are matched using correlation, and the77

change in position, rotation and scale is obtained with the Procrustes algorithm.78

Another successful line of work in object tracking without a priori training is based79

on classification instead of modeling. Collins and Liu [33] presented a system based on80

background/foreground discrimination. Avidan [34] presents one of the many systems that81

use machine learning to classify patches [35, 36]. Avidan uses weak classifiers trained every82

frame and AdaBoost to combine them. Pilet et al. [37] train keypoint classifiers using83

Random Trees that are able to recognize hundreds of keypoints in real-time.84

Simultaneous Modeling and Tracking (SMAT) [1] is in line with methods like Lucas-85

Kanade, relaying on matching to track patches. Lukas-Kanade extracts a template at the86

beginning of the sequence and uses it for tracking, and will fail if the appearance of the patch87

changes considerably. Matthews et al. [38] proposed an strategic update of the template,88

which keeps the template from the first frame to correct errors that appear in the localization.89

When the error is too high, the update is blocked. In [39], a solution is proposed with fixed90
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template that adaptively detected and selected the window around the features. SMAT91

builds a more complex model based on incremental clustering.92

In this paper we combine concepts from active models with the incremental clustering93

proposed in SMAT. The texture model is created online, making the model adaptative,94

while the shape model is learnt offline. The clustering used by SMAT has some limitations,95

and we propose some modifications to obtain a more robust model and better tracking. We96

name the approach Robust SMAT for this reason.97

Evaluation of face tracking methods is performed in most works with images captured98

indoors. Some authors use freely available image sets, but most of them test on internal99

datasets created by them, which limits the validity of a comparison with other systems. Only100

a few authors [40][41] have used images recorded in a vehicle, but the number of samples is101

limited. To the best of our knowledge, there is no publicly available video dataset of people102

driving, either in a simulator or in a real road. We propose a new dataset that covers such103

scenarios.104

3. Robust Simultaneous Modeling and Tracking105

This section describes the Simultaneous Modeling and Tracking (SMAT) of Dowson and106

Bowden [1], and some modifications we propose to improve its performance. SMAT tries to107

build a model of appearance of features and how their positions are related (the structure108

model, or shape), from samples of texture and shape obtained in previous frames.109

The models of appearance and shape are independent. Fitting is performed in the same110

fashion of ASM: the features are first found separatedly using correlation, and then their111

final positions are constrained by the shape model. If the final positions are found to be112

reliable and not caused by fitting errors, the appearance model is updated, otherwise it is113

left unchanged. Figure 1 shows a flow chart of the algorithm.114

Feature tracking

Evaluate
patch positions

Correct
position?

Point Distribution
Model

YesNo

Update App Model
with new patches

Update PDM
with new positions

Appearance Model

New image

Figure 1: SMAT block diagram
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3.1. Appearance modeling115

Each one of the possible appearances of an object, or a feature of it, can be considered116

as a point in a feature space. Similar appearances will be close in this space, away from117

other points representing dissimilar appearances of the object. These groups of points, or118

clusters, form a mixture model that can be used to define the appearance of the object.119

SMAT builds a library of exemplars obtained from previous frames, image patches in this120

case. Dowson and Bowden defined a series of clusters by their median patch, also known121

as representative, and their variance. A new incoming patch is made part of the cluster if122

the distance between it and the median of the cluster is below a threshold that is a funcion123

of the variance. The median and variance of a cluster are recalculated everytime a patch is124

added to it. Up to M exemplars per cluster are kept. If the size limit is reached, the most125

distant element from the representative is removed.126

Everytime a cluster is updated, the weight of the clusters is recalculated as in equation127

1:128

w
(t+1)
k =

{

(w
(t)
k + α) 1

1+α
if k = ku

w
(t)
k

1
1+α

otherwise
(1)

where α ∈ [0, 1) is the learning rate, and ku is the index of the updated cluster. The129

number of clusters is also limited to K. If K is reached, the cluster with the lowest weight130

is discarded.131

In a later work, Dowson et al. [42], introduced a different condition for membership,132

that compares the probability of the exemplar belonging to foreground (a cluster) or to the133

background134

p(fg |d(x, µn), σfg
n

)

p(bg |d(x, µn), σbg
n

)
(2)

where σfg
n

is obtained from the distances between the representative and the other exemplars135

in the cluster, and σbg
n

is obtained from the distances between the representative and the136

exemplars in the cluster offset by 1 pixel.137

We have found that this clustering method can be improved in several ways. The adapt-138

ing nature of the clusters could theoretically lead two or more clusters to overlap. However,139

in our tests we have observed that the opposite is much more frequent: the representative140

of the cluster rarely changes after the cluster has reached a certain number of elements.141

Outliers can be introduced in the model in the event of an occussion of the face by a142

hand or other elements like a scarf. In most cases, these exemplars would be far away from143

the representative in the cluster. To remove them and reduce memory footprint, SMAT144

keeps up to M exemplars per cluster. If the size limit is reached, the most distant element145

from the representative is removed. When very similar patches are constantly introduced,146

one of them will be finally chosen as the median, and the variance will decrease, overfitting147

the cluster and discarding valuable exemplars. At a frame rate of 30 fps, with M set to 50,148

the cluster will overfit in less than 2 seconds. This would happen even if the exemplar to be149

removed is chosen randomly. This procedure will discard valuable information and future,150

subtle changes to the feature will lead to the creation of another cluster.151
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We propose an alternative clustering method, named leaderP, to partially solve these and152

other problems. The method is a modification of the leader algorithm [43, 44], arguably the153

simplest and most frequently used incremental clustering method. In leader, each cluster Ci154

is defined by only one exemplar, and a fixed membership threshold T . It starts by making the155

first exemplar the representative of a cluster. If an incoming exemplar fulfills being within156

the threshold T it is marked as member of that cluster, otherwise it becomes a cluster on157

its own. The pseudocode is shown in algorithm 1.158

Algorithm 1 Leader clustering

1: Let C = {C1, . . . , Cn} be a set of n clusters, with weights {wt
1, . . . , w

t
n}

2: procedure leader(E,C ) ⊲ cluster patch E

3: for all Ci ∈ C do

4: if d(Ck, E) < T then ⊲ Check if patch E ∈ Ck
5: UpdateWeights(wt

1, . . . , w
t
n) ⊲ As in equation 1

6: return

7: end if

8: end for

9: Create new cluster Cn+1, with E as representative.
10: Set wt+1

n+1 ← 0 ⊲ Weight of new cluster Cn+1

11: C ← C ∪ Cn+1 ⊲ Add new cluster to the model
12: if n + 1 > K then ⊲ Remove the cluster with lowest weight
13: Find Ck | wk ≤ wi i = 1, . . . , n
14: C ← C \ Ck
15: end if

16: end procedure

On the other hand, leaderP keeps the first few exemplars added to the cluster are kept,159

up to P . The median of the cluster is chosen as the representative, as in the original160

clustering of Dowson and Bowden. When the number of exemplars in the cluster reaches P ,161

all exemplars but the representative are discarded, and it starts to work under the leader162

algorithm. P is chosen as a small number (we use P = 10). The membership threshold is163

however flexible: the distances between the representative and each of the exemplars that164

are found to be members of the cluster is saved, and the variance of those distances is used165

to calculate the threshold. Because the representative is fixed and distance is a scalar, many166

values can be kept in memory without having a impact on the overall performance. Keeping167

more values reduces the risk of overfitting.168

The original proposal of SMAT used Mutual Information (MI) as a distance measure to169

compare the image patches, and found it to perform better that Sum of Squared Differences170

(SSD), and slightly better than correlation in some tests. Any definition of distance could be171

used. We have also tested Zero-mean Normalized Cross-Correlation (ZNCC). Several types172

of warping were tested in [42]: translation, euclidean, similarity and affine. The results173

showed an increasing failure rate as the degrees of freedom of the warps increased. Based174
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on this, we have chosen to use the simplest, and the patches are only translated depending175

on the point distribution model.176

3.2. Shape model177

In the original SMAT of Dowson and Bowden, the shape was also learned on-line. The178

same clustering algorithm was used, but the membership of a new shape to a cluster was179

calculated using Mahalanobis distance.180

Our method relies on the pre-learned shape model. The restrictions on using a pre-181

learned model for shape are less than those for an appearance model, as it is of lower182

dimensionality and the deformations are easier to model. It has been shown [45] that183

location and tracking errors are mainly due to appearance, and that a generic shape model184

for faces is easier to construct. We use the method of classic ASM [27], which applies PCA185

to a set of samples created by hand and extracts the mean s0 and an orthogonal vector186

basis (s1, . . . , sN). The shapes are first normalized and aligned using Generalized Procrustes187

Analysis [46].188

Let s = (x0, y0, . . . , xn−1, yn−1) be a shape. A shape can be generated from this base as189

s = s0 +
m

∑

i=1

pi · si (3)

Using L2 norm, the coefficients p = (p1, . . . , pN) can be obtained for a given shape s as190

a projection of s on the vector basis191

p = ST (s− s0), pi = (s− s0) · si (4)

where S is a matrix with the eigenvectors si as rows. The estimation of p with equation192

4 is very sensitive to the presence of outlier points: a high error value from one point will193

severely influence the values of p. We use M-estimators [47] to solve this problem. This194

technique has been applied to ASM and AAM in previous works [48, 49], so it is only briefly195

presented here.196

Let s be a shape, obtained by fitting each feature independently. The function to mini-197

mize is198

arg min
p

2n
∑

i=1

ρ(ri, θ) (5)

where ρ : R × R
+ → R

+ is an M-estimator, and θ is obtained from the standard deviation199

of the residues [50]. ri is the residue for coordinate i of the shape200

ri = xi − (si
o +

m
∑

j=1

pjs
i
j)) (6)

where xi are the points of the shape s, and si
j is the ith element of the vector sj.201

Minimizing function 5 is a case of re-weighted least squared. The weight decreases more202

rapidly than the square of the residue, and thus a point with error tending to infinite will203

have zero weight in the estimation.204
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Several robust estimators have been tested: Huber, Cauchy, Gaussian and Tukey func-205

tions [50]. A study was made in [19] that resulted in similar performance for all of them206

in a similar scenario to that of this paper, and Huber function was chosen. Huber function207

performs correctly up to a number of outliers of 50% of the points.208

We use the 20-point distribution of the BioID database [51]. Data from this database209

was used to train the model. This distribution places the points in some of the most salient210

locations of the face, and has been used in several other works [40].211

4. Tests and results212

This section presents the video sequences used to test different tracking algorithms in213

a driving scenario. The dataset contains most actions that appear in everyday driving214

situations. A comparison between our approach and SMAT is presented. Additionally, we215

compare R-SMAT results with the recently introduced Stacked Trimmed ASM (STASM).216

4.1. Test set217

Driving scenarios present a series of challenges for a face tracking algorithm. Drivers218

move constantly, rotate their head (self-occlusing part of the face) or occlude their face with219

their hands (or other elements such as glasses). If other people are in the car, talking and220

gesturing are common. There are also constant background changes and, more importantly,221

frequent illumination changes, produced by shadows of trees or buildings, streets lights,222

other vehicles, etc. A considerable amount of test data is needed to properly evaluate the223

performance of a system under all these situations.224

A new video dataset has been created, with sequences of subjects driving outdoor, and225

in a simulator. The RobeSafe Driver Monitoring Video (RS-DMV) dataset contains 10226

sequences, 7 recorded outdoors (Type A) and 3 in a simulator (Type B).227

Outdoor sequences were recorded on RobeSafe’s vehicle moving at the campus of the228

University of Alcala. Drivers were fully awake, talked frequently with other passengers in229

the vehicle and were asked to look regularly to the rear-view mirrors and operate the car230

sound system. The cameras are placed over the dashboard, to avoid occlusions caused by231

the wheel. All subjects drove the same streets, shown in figure 2.232

(a) Trayectory of the vehicle during recordings

Figure 2: Trayectory of the vehicle (map from maps.google.com)

8



The length of the track is around 1.1 km. The weather conditions during the recordings233

were mostly sunny, which made noticeable shadows appear on the face. Figure 3 shows a234

few samples from these video sequences.235

Figure 3: Samples of outdoor videos

Type B sequences were recorded in a realistic truck simulator. Drivers were fully awake,236

and were presented with a demanding driving environment were many other vehicles were237

present and potentially dangerous situations took place. These situations increase the prob-238

ability of small periods of distraction leading to crashes or near-crashes. The sequences try239

to capture both distracted behaviour and the reaction to dangerous driving situations.240

A few images from Type B sequences can be seen in figure 4. The recording took place241

in a low-light scenario that approached nighttime conditions. This forced the camera to242

increase exposure time to a maximum, which lead to motion blur being present during head243

movements. Low power near-IR illumination was used in some of the sequences to increase244

the available light.245

Figure 4: Samples of sequences in simulator

The outdoor sequences are around 2 minutes long, and sequences in the simulator are246

close to 10 minutes in length. The algorithms in this paper were tested on images of ap-247

proximately 320× 240 pixels, but high resolution images were acquired so they can be used248

in other research projects. The images are 960 × 480 pixels for the outdoor sequences and249

1392× 480 for the simulator sequences, and are stored without compression. Frame rate is250

30 frames per second in both cases. The camera has a 2/3” sensor, and used 9mm standard251

9



lenses. Images are grayscale. The recording software controlled camera gain using values of252

the pixels that fell directly on the face of the driver.253

The RS-DMV is publicly available, free of charge, for research purposes. Samples and254

information on how to obtain the database are available at the authors’ webpage1.255

4.2. Performance evaluation256

Performance of the algorithms is evaluated as the error between the estimated position257

of the features and their actual position, as given by a human operator. Hand-marking is a258

time consuming task, and thus not all frames in all videos have been marked. Approximately259

1 in 30 frames (1 per second) has been marked in the sequences in RS-DMV. We call this260

frames keyframes.261

We used the metric me, introduced by Cristinacce and Cootes [40]. Let xi be the points262

of the ground-truth shape s, and let x̂i be the points of the estimated shape ŝ. Then,263

me =
1

ns

n
∑

i=1

di, di =
√

(xi − x̂i)T (xi − x̂i) (7)

where n is the number of points and s is the inter-ocular distance. We also discard the point264

on the chin and the exterior of the eyes, because their location changes much from person265

to person. Moreover, the variance of their position when marked by human operators is266

greater than for the other points. Because only 17 points are used, we note the metric as267

me17. In the event of a tracking loss, of if the face can not be found, the value of me17 for268

that frame is set to ∞.269

During head turns, the inter-eye distance reduces with the cosine of the angle. In these270

frames, s is not valid and is calculated from its value on previous frames.271

Handmarked points and software used to ease the marking process are distributed with272

the RS-DMV dataset.273

4.3. Results274

We tested the performance of R-SMAT approach on the RS-DMV dataset, as well as275

that of SMAT. We compared these results with those obtained by STASM, using the imple-276

mentation in [2].277

One of the most remarkable problems of (R-)SMAT is that it needs to be properly278

initialized, and the first frames of the sequence are key to building a good model. We279

propose STASM to initialize (R-)SMAT in the first frame. STASM has been shown to be280

very accurate when the face is frontal. Nonetheless, a slightly incorrect initialization will281

make (R-)SMAT track the (slightly) erroneous points. To decouple this error from the282

evaluation of accuracy of (R-)SMAT in the tests, the shape was initialized in the first frame283

with positions from the ground-truth data. At the end of this section, the performance of284

R-SMAT with automatic initialization is evaluated.285

1www.robesafe.com/personal/jnuevo
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First, a comparison of the shape models is presented. With the best shape model, the286

original clustering algorithm and the proposed alternative are evaluated. Results are pre-287

sented for outdoor and simulator sequences separatedly, as each has specific characteristics288

on their own.289

The incremental shape model of SMAT was found to produce much higher error than290

the pre-learned model. Figure 5 shows the cumulative distribution error of the incremental291

shape model (on-line) with the robust pre-learned model (using Huber function) (robust).292

For comparison purposes, the figure also shows the performance for the pre-learned shape293

model fitted using a L2 norm (non-robust). All models use leaderP clustering, and patches294

of 15× 15 pixels.295
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Figure 5: Performance of different shape models, with leaderP clustering

Clear improvements in performance are made by the change to a pre-learned model with296

robust fitting. The robust, pre-learned shape model is very important in the first frames,297

because it allows the model to have bigger certainties that the patches that are being included298

correspond to correct positions. Robust shape model is used in the rest of the experiments299

in this paper. Figure 6 shows the plot of the me17 distance of both models in a sequence. A300

clear example of the benefits of the robust model is depicted in figure 7. The online model301

diverges as soon as a few points are occluded by the hand, while the robust model keeps302

track of the face. The method is also able to keep track of the face during head rotations,303

although with increased fitting error. This is quite remarkable for a model that has only304

been trained with fully frontal faces.305

Figure 8 shows the performance of the original SMAT clustering compared with the306

proposed leaderP clustering algorithm, as implemented in R-SMAT.307

R-SMAT presents much better performance than the original SMAT clustering. This is308

specially clear in 8(b). We stated in 3.1 that the original clustering method could lead to309

overfitting, and type B sequences are specially prone to this: patches are usually dark and310

do not change much from frame to frame, and the subject does not move frequently. When a311

movement takes place, it leads to high error values, because the model has problems finding312

the features.313
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(a) Frame 227 - online (b) Frame 230 - online (c) Frame 233 - online

(d) Frame 227 - robust (e) Frame 230 - robust (f) Frame 233 - robust

Figure 7: Samples of type A sequence #1. Outlier points are drawn in red.

Table 1 shows the tracking losses of SMAT and R-SMAT, as a percentage of the keyframes314

in the sequences. Tracking losses were monitored by counting the points inside the face area,315

detected with Viola&Jones algorithm [52]. Tracking was considered lost when more than316

33% of the points were out of the box, or when the rotation of the model exceeded a pre-set317

value. The model was then repositioned, simply by centering it on the Viola&Jones box.318

Mean Maximum Minimum

R-SMAT
Type A 0.99% 2.08%(seq. #7) 0%(seq. #1,#2,#6)
Type B 0.71% 1.96%(seq. #9) 0%(seq. #10)

SMAT
Type A 1.77% 5.03%(seq. #4) 0%(seq. #1,#2,#5)
Type B 1.03% 2.45%(seq. #9) 0%(seq. #10)

Table 1: Track losses for different clustering methods
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Figure 8: Comparison of the performance of clustering algorithms

4.3.1. R-SMAT with automatic initialization319

Results presented above have been obtained initializing SMAT and R-SMAT with land-320

marks from the handmarked ground-truth data. In a real scenario, an automatic algorithm321

would be used to initialize SMAT and R-SMAT.322

We have used STASM for this task. STASM has demonstrated high accuracy, but only323

works properly when the face is frontal to the camera, and does not find the face otherwise.324

Another problem, critical to our application, is that it does not work in real time. However,325

a one-time delay can be considered acceptable. STASM was run on the first frame of each326

sequence, and its estimation seeded the position of R-SMAT in that video. Figure 9 plots327

the error distributions of R-SMAT when initialized with STASM and from ground-truth328

(manual). The error of STASM is also shown.329
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Figure 9: Comparison of the performance of STASM and SMAT

As expected, the figure shows the results worsen for both types of sequences. But the330

lost accuracy is relatively small, with a 5% loss at me17 = 0.1 for type A sequences, and331
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10% loss for type B. The mean of the me17 error of STASM in the first frame is 0.0571 for332

type A sequences and 0.0805 for type B .333

STASM is plotted in figure 9 with and without considering frames where the face was334

not found (losses). For all types of sequences, R-SMAT initialized manually outperforms335

STASM when losses are considered. Expectedly, STASM shows better accuracy than R-336

SMAT when tracking is not lost (i.e., when the face is frontal). R-SMAT initialized with337

STASM performs almost identically as STASM in figure 9(b), and slightly worse for type A338

sequences.339

(a) Seq. #1, frame 2570 (b) Seq. #5, frame 280 (c) Seq. #5, frame 450

(d) Seq. #6, frame 1654 (e) Seq. #6, frame 2579 (f) Seq. #7, frame 290

(g) Seq. #7, frame 2610 (h) Seq. #9, frame 7440 (i) Seq. #9, frame 11730

Figure 10: Examples from sequences with R-SMAT fitted

Figure 10 shows a few frames with R-SMAT fitted to the face of the drivers in moments340

of the sequences that reflect some of the challenges the system has to face. Figures 10(a)-341

10(d) contain drivers talking and gesturing. Drivers in sequences #5 and #6 talk frequently342

and no tracking loss results from these actions. The system is able to work with drivers that343

also wear a beard, as in figure 10(d). Examples of head turns appear in figures 10(e) and344

10(f). Most occlusions in the sequences are caused by the presence of a hand in front of the345

camera. If the occlusion is partial as in figure 10(g), the tracker is able to correctly position346

the model.347

Samples of R-SMAT fitted to one of the simulator sequences appear in figures 10(h) and348

10(i). Despite the low-light conditions, a low fitting error is obtained. The driver in the349

sequences talks and gestures frequently.350
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Figures 11 and 12 plot the error for R-SMAT and STASM for sequences #6 and #7.351

Dots on the STASM curve mark keyframes where the face was not found. A case of quick352

illumination change, due to shadows of trees by the road is found in sequence #6 around353

frame 1400. A R-SMAT track loss can be observed around frame 2400 of the latter sequence,354

due to a total occlusion of the face. Figure 12 also shows that fitting error is higher during355

head turns, but in most cases track is not lost.356

Figure 11: Error plots for STASM and R-SMAT in sequence #6

Figure 12: Error plots for STASM and R-SMAT in sequence # 7

4.4. Timings357

One of the most important requirements for R-SMAT is for it to run in real-time. Table358

2 summarizes the average execution speed for R-SMAT in frames per second, for some359

representative configurations. The worst frame processing times are close to the limit, but360
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these are extreme cases that occur infrequently. Processing times for STASM are also361

included for comparison. STASM executes the whole initialization process for each frame,362

and does not use the position found in the previous frame. This would result in a shorter363

search time.364

Configuration Mean (fps) Sdv (fps) Worst frame (fps)

R-SMAT 112.56 32.80 36.86
STASM 2.17 0.13 1.96

Table 2: Execution time of R-SMAT and STASM in frames per second

The tests were run on a Xeon 2.2 GHz, running GNU/Linux, with GCC 4.2 as compiler.365

Multi-threading was not used and compiler optimizations were disabled (-O0). Times on366

the table refer to the actual tracking and the tracking loss detection, and do not consider367

time employed in the display of results, loading of data and saving results to the hard drive.368

5. Conclusions and future work369

This paper has presented a face tracking method based on automatic appearance mod-370

eling, to be used as part of a driver monitoring application.371

Monitoring a driver with computer vision is a complex task, and proper performance372

evaluation of a method requires a comprehensive set of test data. A new video dataset373

(RS-DMV) has been created, comprised of sequences recorded in a real scenario, and in a374

truck simulator in low light conditions. In the first set of sequences, subjects were asked to375

drive a vehicle at the University campus. Drivers in the simulator were fully awake, and were376

presented with dangerous situations that would highlight distractions. RS-DMV dataset has377

been used to test the methods in this paper, and is freely available for research purposes.378

The proposed face tracking method is an active model. The shape model is built offline379

from handmarked data, and Huber fuction is used for fitting. The texture model is created380

online using incremental clustering, in a similar fashion to SMAT. We have presented and381

alternative incremental clustering algorithm, which addresses some of the weaknesses of382

the SMAT proposal. The improvements of R-SMAT over the original SMAT have been383

evaluated, and the performance of R-SMAT and STASM has been compared on the sequences384

in RS-DMV. R-SMAT is able to process more than 100 frames per second, and obtains similar385

accuracy to STASM .The source code of R-SMAT is available from the authors.386

Future work will explore ways to make R-SMAT fully autonomous by improving the387

incremental shape model. Texture clustering has shown to be reliable, but better techniques388

to remove outliers from the model are needed. Including a multi-scale approach to appear-389

ance modeling and model fitting would be of help in other scenarios where the size of the390

face changes noticiably. The R-SMAT has been used to track and model faces in this paper,391

but can be extended to other deformable objects. The RS-DMV dataset will be extended392

with more sequences, more drivers and more diverse scenarios. Finally, the R-SMAT is to393

be made part of a driver monitoring system.394
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