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Abstract—This paper presents a non-intrusive pro-
totype computer vision system for monitoring driver’s
vigilance in real-time. It is based on a hardware system,
for real time acquisition of driver’s images using an
active IR illuminator, and their software implementa-
tion for monitoring some visual behaviors that char-
acterize a driver’s level of vigilance. Six parameters
are calculated: PERCLOS, eye closure duration, blink
frequency, nodding frequency, face position and fixed
gaze. These parameters are combined, using a fuzzy
classifier, to infer the inattentiveness level of the driver.
The use of multiple visual parameters and the fusion
of them yield a more robust and accurate inattention
characterization than by using a single parameter.
The system has been tested with different sequences
recorded in night and day driving conditions in a
motorway and with different users. Some experimental
results and conclusions about the performance of the
system are shown.

Index Terms—Driver vigilance, visual fatigue behav-
iors, PERCLOS, eyelid movement, face position, fuzzy
classifier

I. Introduction

T
HE increasing number of traffic accidents due to
a diminished driver’s vigilance level has become a

serious problem for society. In Europe, statistics show that
between 10% and 20% of all traffic accidents are due to
drivers with a diminished vigilance level caused by fatigue.
In trucking industry, about 60% of fatal truck accidents
are related to driver fatigue. It is the main cause of heavy
truck crashes [1].

According to the U.S. National Highway Traffic Safety
Administration (NHTSA), falling asleep while driving is
responsible for at least 100.000 automobile crashes an-
nually. An annual average of roughly 40,000 nonfatal
injuries and 1,550 fatalities results from these crashes
[2]. These figures only cover crashes happening midnight
and 6 am, involving a single vehicle and a sober driver
travelling alone, including the car departing from the
roadway without any attempt to avoid the crash. These
figures underestimate the true level of the involvement of
drowsiness because they do not include crashes at daytime
hours involving multiple vehicles, alcohol, passengers or
evasive manoeuvres. These statistics do not deal either
with crashes caused by driver distraction, which is believed
to be a larger problem. As car manufacturers incorporate
intelligent vehicle systems in order to satisfy consumer
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ever increasing demand for a wired, connected world, the
level of cognitive stress on drivers is being increased. That
is, the more assistant systems for comfort, navigation or
communication the more sources of distraction from the
most basic task at hand, i.e. driving the vehicle.

With this background, developing systems for moni-
toring driver’s level of vigilance, and alerting the driver
when he is not paying adequate attention to the road,
is essential to prevent accidents. This paper presents an
original system for monitoring driver inattention, focusing
in the drowsiness or fatigue category, according to the
classification shown in [3].

The rest of the paper is structured as follows. In section
II we present a review of the main previous work in this
line. Section III describes the general system architecture,
explaining its main parts. Experimental results are shown
in section IV. Finally, in section V we present the conclu-
sions and future works.

II. Previous work

In the last few years many researchers have been work-
ing on the development of safety systems using differ-
ent techniques. The most accurate techniques are based
on physiological measures like brain waves, heart rate,
pulse rate, respiration, etc. These techniques are intrusive,
since they need to attach some electrodes on the drivers,
causing annoyance to them. A representative project in
this line is MIT Smart Car [4], where several sensors
(electrocardiogram, electromyogram, respiration and skin
conductance) embedded in a car and visual information
for sensors confirmation are used. In ASV (Advanced
Safety Vehicle) project, held by Toyota [5], the driver
must wear a wristband in order to measure his heart rate.
Others techniques monitor eyes and gaze movements using
a helmet or special contact lens [6]. These techniques,
though less intrusive, are still not acceptable in practice.

A driver’s state of vigilance can also be characterized
by indirect vehicle behaviors like lateral position, steering
wheel movements, and time to line crossing. Although
these techniques are not intrusive they are subject to
several limitations such as vehicle type, driver experi-
ence, geometric characteristics, state of the road, etc. On
the other hand, these procedures require a considerable
amount of time to analyze user behaviors and thereby
they do not work with the so-called micro-sleeps: when
a drowsy driver falls asleep for some seconds on a very
straight road section without changing the lateral position
of the vehicle [7]. In this line we can find different experi-
mental prototypes, but at this moment none of them has
been commercialized. Among them there is an important
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Spanish system called TCD (Tech Co Driver) [8] based
on steering wheel and lateral position sensors. Toyota [5]
uses steering wheel sensors (steering wheel variability)
and pulse sensor to record the heart rate, as explained
above. Mitsubishi has reported the use of steering wheel
sensors and measures of vehicle behavior (such as lateral
position of the car) to detect driver drowsiness in their
advanced safety vehicle system [5]. Daimler Chrysler has
developed a system based on vehicle speed, steering angle
and vehicle position relative to road delimitation (recorded
by a camera) to detect if the vehicle is about to leave the
road [9].

People in fatigue show some visual behaviors easily
observable from changes in their facial features like eyes,
head, and face. Typical visual characteristics observable
from the images of a person with reduced alertness level in-
clude longer blink duration, slow eyelid movement, smaller
degree of eye opening (or even closed), frequent nodding,
yawning, gaze (narrowness in the line of sight), sluggish
facial expression, and drooping posture. Computer vision
can be a natural and non-intrusive technique for extracting
visual characteristics that typically characterize a driver’s
vigilance from the images taken by a camera placed in
front of the user. Many researches have been reported
in the literature on developing image-based driver alert-
ness using computer vision techniques. Some of them are
primarily focused on head and eye tracking techniques
using two cameras. In [10] the method presented estimates
head pose and gaze direction. It relies on 2D template
searching and then 3D stereo matching of facial features.
A 3D model is then fit and minimized using virtual springs,
instead of the least squares fit approach, for determining
the head pose. In [11] a method is presented based on
a stereo template matching system to determine some
specific facial features. A least squares optimization is done
to determine the exact pose of the head. Two eye trackers
calculate the eye-gaze vector for each eye, these vectors are
combined with the head pose to determine gaze direction.
In [12] a system called FaceLAB developed by a company
called Seeing Machines is presented. This is an evolution
of the two previous references. The 3D pose of the head
and the eye-gaze direction are calculated in an exact
way. FaceLAB also monitors the eyelids, to determine eye
opening and blink rates. With this information the system
estimates the driver’s fatigue level. According to author
information, the system operates at day and night but at
night the performance of the system decreases. All systems
explained above rely on manual initialization of feature
points. The systems appear to be robust but the manual
initialization is a limitation, although it makes trivial the
whole problem of tracking and pose estimation.

In [13] we can find a 2D pupil monocular tracking
system based on the differences in color and reflectivity
between the pupil and iris. The system monitors driving
vigilance by studying the eyelid movement. Another suc-
cessful head/eye monitoring and tracking of drivers system
to detect drowsiness using of one camera, and based on
color predicates, is presented in [14]. This system is based

on passive vision techniques and its functioning can be
problematical in poor or very bright lighting conditions.
Moreover, it does not work at night, when the monitoring
is more important.

In order to work at nights some researches use active
illumination based on infrared LED. In [15] a system using
3D vision techniques to estimate and track the 3D line of
sight of a person using multiple cameras is proposed. The
method relies on a simplified eye model, and it uses the
Purkinje images of an infrared light source to determine
eye location. With this information, the gaze direction
is estimated. Nothing about monitoring driver vigilance
is presented. In [16] a system with active infrared LED
illumination and a camera is implemented. Because of the
LED illumination, the method can easily find the eyes
and based on them, the system locates the rest of the
facial features. They propose to analytically estimate the
local gaze direction based on pupil location. They calculate
eyelid movement and face orientation to estimate driver
fatigue. Almost all the active systems reported in the
literature have been tested in simulated environments but
not in real moving vehicles. A moving vehicle presents
new challenges like variable lighting, changing background
and vibrations that must be taken into account in real
systems. In [17] an industrial prototype called Copilot is
presented. This system uses infrared LED illumination to
find the eyes and it has been tested with truck’s drivers
in real environments. It uses a simple subtraction process
for finding the eyes and it only calculates a validated
parameter called PERCLOS (percent eye closure), in order
to measure driver’s drowsiness. This system currently
works under low light conditions.

Systems relying on a single visual cue may encounter
difficulties when the required visual features cannot be ac-
quired accurately or reliably, as happens in real conditions.
Then, a single visual cue may not always be indicative
of the overall mental condition [16]. The use of multiple
visual cues reduces the uncertainty and the ambiguity
present in the information from a single source. The most
recent researches in this line use this hypothesis. Currently,
the ambitious European project AWAKE [1] is under
development. The Consortium includes two major car
manufacturers (Fiat, DaimlerChrysler), four automotive
system developers (SIEMENS, ACTIA, NAVTECH and
AUTOLIV) and many research institutes and universi-
ties. A multi-sensor approach is proposed in this project
adapted to the driver, the vehicle, and the environment
in an integrated way. This system merges, via an artificial
intelligent algorithm, data from on-board driver monitor-
ing sensors (such as an eyelid camera and a steering grip
sensor) as well as driver behavior data (i.e. from lane
tracking sensor, gas/brake and steering wheel positioning).
The system must be personalized for each driver during
a learning phase. The system is under exhaustive pilot
testing for determining its functional performance and the
user acceptance of the application [18]. At the moment
only some partial results have been presented.

This paper describes a real-time prototype system based
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in computer vision for monitoring driver vigilance using
active infrared illumination and a single camera placed
on the car dashboard. We have employed this technique
because our goal is to monitor a driver on real conditions
(vehicle moving) and in a very robust and accurate way
mainly at nights (when the probability to crash due to
drowsiness is the highest). The proposed system does not
need manual initialization and monitors several visual
behaviors that typically characterize a person’s level of
alertness while driving. In a different fashion than other
previous works, we have fused different visual cues from
one camera using a fuzzy classifier instead of different
cues from different sensors. We have analyzed the different
visual behaviors that characterize a drowsy driver and
we have studied the best fusion for optimal detection.
Moreover, we have tested our system during several hours
in a car moving in a motorway and with different users.
Preliminary results of this system were presented in [19].

III. System architecture

The general architecture of our system is shown in
figure 1. It consists of four major modules: 1) Image
acquisition, 2) Pupil detection and tracking, 3) Visual
behaviors and 4) Driver vigilance. Image acquisition is
based on a low-cost CCD micro-camera sensitive to near-
IR. The pupil detection and tracking stage is responsible
for segmentation and image processing. Pupil detection is
simplified by the ”bright pupil” effect, similar to the red
eye effect in photography. Then, we use two Kalman filters
in order to track the pupils robustly in real-time. In the
visual behaviors stage we calculate some parameters from
the images in order to detect some visual behaviors easily
observable in people in fatigue: slow eyelid movement,
smaller degree of eye opening, frequent nodding, blink
frequency, and face pose. Finally, in the driver vigilance
evaluation stage we fusion all the individual parameters
obtained in the previous stage using a fuzzy system,
yielding the driver inattentive level. An alarm is activated
if this level is over a certain threshold.

ok?

Pupil detection
and tracking

Activate warning

Fatigue?

Driver vigilance Visual
behaviours

yes

no

no

yes

Image acquisition

yes

Fig. 1. General architecture

A. Image Acquisition System

The purpose of this stage is to acquire the video im-
ages of the driver’s face. In this application the acquired
images should be relatively invariant to light conditions
and should facilitate the eye detection and tracking (good
performance is necessary). The use of near-IR illuminator
to brighten the driver’s face serves these goals [20]. First,
it minimizes the impact of changes in the ambient light.
Second, the near-IR illumination is not detected by the
driver, and then, this does not suppose an interference
with the user’s driving. Third, it produces the bright pupil
effect, which constitutes the foundation of our detection
and tracking system. A bright pupil is obtained if the
eyes are illuminated with an IR illuminator beaming light
along the camera optical axis. At the IR wavelength, the
retina reflects almost all the IR light received along the
path back to the camera, and a bright pupil effect will
be produced in the image. If illuminated off the camera
optical axis, the pupils appear dark since the reflected light
of the retina will not enter the camera lens. An example of
the bright/dark pupil effect can be seen in figure 2. This
pupil effect is clear with and without glasses, with contact
lenses and it even works to some extent with sunglasses.

,

(a) Image obtained with
inner IR ring

(b) Image obtained with
outer IR ring

,

(c) Difference Image

Fig. 2. Fields captured and subtraction

Figure 3 shows the image acquisition system configura-
tion. It is composed by a miniature CCD camera sensitive
to near-IR and located on the dashboard of the vehicle.
This camera focuses on the driver’s head for detecting the
multiple visual behaviors. The IR illuminator is composed
by two sets of IR LEDs distributed symmetrically along
two concentric and circular rings. An embedded PC with a
low cost frame- grabber is used for video signal acquisition
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and signal processing. Image acquiring from the camera
and LED excitation is synchronized. The LED rings il-
luminate the driver’s face alternatively, one for each of
the image fields, providing different lighting conditions for
almost the same image, once the fields are de-interlaced
on the next stages.

PC:
Img. acquisition
Synchorization
Illumination control

Synchronization & driving

B&W CameraIR−LED

Fig. 3. Block diagram of the prototype

Ring sizes has been empirically calculated in order to
obtain a dark pupil image if the outer ring is turned on
and a bright pupil image if the inner ring is turned on.
LEDs in the inner ring are as close as possible to the
camera, in order to maximize the ”bright pupil” effect. The
value of the outer ring radius is a compromise between the
resulting illumination, that improves as it is increased, and
the available space in the car’s dashboard. The symmetric
position of the LEDs in the rings, around the camera
optical axis, cancels shadows generated by LEDs. The
inner ring configuration obtains the bright pupil effect
because the center of the ring coincides with the camera
optical axis, actuating as there were only a LED located
on the optical axis of the lens. The outer ring provides
ambient illumination that is used for contrast enhancing.
In spite of those LEDs producing the dark pupil effect, a
glint can be observed on each pupil.

The explained acquisition system works very well under
controlled light conditions, but real scenarios presents
new challenges that must be taken into account. Lighting
conditions were one of the most important problems to
solve in real tests. As our system is based on the reflection
of the light emitted by the IR LEDs, external light sources
are the main source of noise. Three main sources can
be considered, as are depicted in figure 4: artificial light
from elements outside the road (such as light bulbs),
vehicle lights, and sun light. The effect of lights from
elements outside the road mainly appears in the lower
part of the image (figure 4(a)) because they are situated
above the height of the car and the beam enters the car
with a considerable angle. Then, this noise can be easily
filtered. On the other hand, when driving on a double
direction road, vehicle lights directly illuminate the driver,
increasing the pixels level quickly and causing the pupil

effect to disappear (figure 4(b)). Once the car has passed,
the light level reduces very fast. Only after few frames,
the AGC (Automatic Gain Controller) integrated in the
camera compensates the changes, so very light and dark
images are obtained, affecting the performance of the inner
illumination system.

Regarding the sun light, it only affects at day time but
its effect changes as function of the weather (sunny, cloudy,
rainy, etc) and the time of the day. With the exception
of the sunset, dawn and cloudy days, sun light hides
the inner infrared illumination and then the pupil effect
disappears (figure 4(c)). For minimizing interference from
light sources beyond the IR light emitted by our LEDs, a
narrow band-pass filter, centered at the LED wavelength,
has been attached between the CCD and the lens. This
filter solved the problem of artificial lights and vehicle
light almost completely, but it adds a new drawback for
it reduces the intensity of the image, and then the noise
is considerably amplified by the AGC. The filter does not
eliminate the sun light interference, except for cases when
the light intensity is very low. This is caused by the fact
that the power emitted by the sun in the band of the filter
is able to hide the inner illumination. An image of this
case, taken by the sun set, is depicted in figure 4(d). A
possible solution for this problem could be the integration
of IR filters in the car glasses. This option does not have
been tested yet.

B. Pupil detection and tracking

This stage starts with pupil detection. As mentioned
above, each frame is de-interlaced in even and odd fields,
containing the bright and dark pupil images separately.
The even image field is then digitally subtracted from the
odd image field to produce the difference image. In this
image, pupils appear as the brightest parts in the image as
can be seen in figure 2. This method minimizes the ambient
light influence by subtracting it in the generation of the
difference image. This procedure yields high contrast im-
ages where the pupils are easily found. It can be observed
that the glint produced by the outer ring usually falls close
to the pupil, with the same grey level as the bright pupil.
The shape of the pupil blob in the difference image is not
a perfect ellipse because the glint cuts the blob, affecting
the modelling of the pupil blobs and, consequently, the
calculation depending on it, as will be explained later. This
is the reason why the system only uses subtracted images
during initialization, and when light conditions are poor
(this initialization time varies depending on the driver and
light conditions, but it was below 5 seconds for all test). In
other cases, only the field obtained with the inner ring is
processed, increasing accuracy and reducing computation
time.

Pupils are detected on the resulting image, by searching
the entire image to locate two bright blobs that satisfy cer-
tain constraints. The image is binarized, using an adaptive
threshold, for detecting the brighter blobs in the image.

A standard 8-connected components analysis is then ap-
plied to the binaryzed difference image to identify binary
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(a) Out-of-the-road lights
effect

(b) Vehicle lights effect (c) Sunlight effect (d) Sunlight effect with fil-
ter

Fig. 4. Effects of external lights in the acquisition system

blobs that satisfy certain size and shape constraints. The
blobs that are out of some size constraints are removed,
and for the others an ellipse model is fit to each one.
Depending on their size, intensity, position and distance,
best candidates are selected, and all the possible pairs
between them are evaluated. The pair with the highest
qualification is chosen as the detected pupils, and its
centroids are returned as the pupil positions.

One of the main characteristics of this stage is that
it is applicable to any user without any supervised ini-
tialization. Nevertheless, the reflection of the IR in the
pupils under the same conditions varies from one driver to
another. Even on the same driver, the intensity depends
on the gaze point, head position and the opening of the
eye. Apart from those factors, lightning conditions change
with time, which modifies the intensity of the pupils. On
other hand, the size of the pupils also depends on the user,
and the distance to the camera. To deal with those differ-
ences in order to be generic, our system uses an adaptive
threshold in the binarization stage. The parameters of the
detected pupils are used to update the statistics that set
thresholds and margins in the detection process. Those
statistics include size, grey level, position and apparent
distance and angle between pupils, calculated over a time
window of 2 seconds. The thresholds also get their values
modified if the pupils are not found, widening the margins
to make more candidates available to the system.

Another question related to illumination that is not
usually addressed in the literature is the sensitivity of the
eye to IR emission. As the exposure time to the IR source
increases, its power has to be reduced in order to avoid
damaging the internal tissues of the eye. This imposes a
limit on the emission of the IR- LEDs. To calculate the
power of our system, we have followed the recommenda-
tions of [21], based on IEC 825-1 and CENELEC 60825-1
infrared norms. With these limitations, no negative effects
have been reported in the drivers that collaborated in the
tests.

To continuously monitor the driver it is important to
track his pupils from frame to frame after locating the eyes
in the initial frames. This can be done efficiently by using
two Kalman filters, one for each pupil, in order to predict
pupil positions in the image. We have used a pupil tracker

based on [16] but we have tested it with images obtained
from a car moving in a motorway. Kalman filters presented
in [16] works reasonably well under frontal face orientation
with open eyes. However, it will fail if the pupils are
not bright due to oblique face orientations, eye closures,
or external illumination interferences. Kalman filter also
fails when a sudden head movement occurs because the
assumption of smooth head motion has not been fulfilled.
To overcome this limitation we propose a modification
consisting on using an adaptive search window, which size
is determined automatically, based on pupil position, pupil
velocity, and location error. This way, if Kalman filtering
tracking fails in a frame, the search window progressively
increases its size. With this modification, the robustness
of the eye tracker is significantly improved, for the eyes
can be successfully found under eye closure or oblique face
orientation.

The state vector of the filter is represented as xt =
(ct, rt,ut,vt), where (ct, rt) indicates the pupil pixel posi-
tion (its centroid) at time t and (ut,vt) be its velocity at
time t in c and r directions respectively. Figure 5 shows an
example of the pupil tracker working in a test sequence.
Rectangles on the images indicate the search window of the
filter, while crosses indicate the locations of the detected
pupils. Figures 5(f) and 5(g) draw the estimation of the
pupil positions for the sequence under test. The tracker
is found to be rather robust for different users without
glasses, lighting conditions, face orientations and distances
between the camera and the driver. It automatically finds
and tracks the pupils even with closed eyes and partially
occluded eyes, and can recover from tracking-failures. The
system runs at a frame-rate of 25 frames per second.

Performance of the tracker gets worse when users wear
eyeglasses because different bright blobs appear in the
image due to IR reflections in the glasses, as can be seen
in figure 6. Although the degree of reflection on the glasses
depends on its material and the relative position between
the user’s head and the illuminator, in the real tests carried
out, the reflection of the inner ring of LEDs appears as a
filled circle on the glasses, of the same size and intensity
as the pupil. The reflection of the outer ring appears as
a circumference with bright points around it and with
similar intensity to the pupil. At the moment we have
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not applied specific algorithms in order to improve the
tracking with glasses, but in the near future we have the
intention of detecting the patters generated by the outer
and the inner rings and remove them from the images. The
system was also tested with people wearing contact lenses.
In this case no differences in the tracking were obtained
respect to drivers not wearing them.

Fig. 6. System working with user wearing glasses

C. Visual behaviors

Eyelid movements and face pose are some of the vi-
sual behaviors that reflect a person’s level of inattention.
There are several ocular measures to characterize eyelid
movements such as eye closure duration, blink frequency,
fixed gaze, eye closure/opening speed, and the recently
developed parameter PERCLOS [22], [23]. This last mea-
sure indicates the accumulative eye closure duration over
time excluding the time spent on normal eye blinks. It
has been found to be the most valid ocular parameter for
characterizing driver fatigue [5]. Face pose determination
is related to computation of face orientation and position,
and detection of head movements. Frequent head tilts
indicate the onset of fatigue. Moreover, the nominal face
orientation while driving is frontal. If the driver faces in
other directions for an extended period of time, it is due
to distraction. In this work, we have measured all the
explained parameters in order to evaluate its performance
for the prediction of driver inattention state focusing on
fatigue category.

To obtain the ocular measures we continuously track the
subject’s pupils and fit two ellipses, to each of them, using
a modification of the LIN algorithm [24], as implemented
in the OpenCV library [25]. The degree of eye opening is
characterized by the pupil shape. As eyes close, the pupils
start getting occluded by the eyelids and their shapes get
more elliptical. So, we can use the ratio of pupil ellipse
axes to characterize the degree of eye opening. To obtain
a more robust estimation of the ocular measures and, for

example, to distinguish between a blink and an error in
the tracking of the pupils, we use a Finite State Machine
(FSM) as we depict in figure 7. Apart from the init state,
five states have been defined: tracking ok, closing, closed,
opening and tracking lost. Transitions between states are
achieved from frame to frame as a function of the width-
height ratio of the pupils.

The system starts at the init state. When the pupils
are detected, the FSM passes to the tracking ok state
indicating that the pupil’s tracking is working correctly.
Being in this state, if the pupils are not detected in a
frame, a transition to the tracking lost state is produced.
The FSM stays in this state until the pupils are correctly
detected again. In this moment, the FSM passes to the
tracking ok state. If the width-height ratio of the pupil
increases above a threshold (20% of the nominal ratio), a
closing eye action is detected and the FSM changes to the
closing state. Because the width-height ratio may increase
due to other reasons, such as segmentation noise, it is
possible to return to the tracking ok state if the ratio does
not constantly increase.

INIT_STATE

TRACKING_OK

TRACKING_LOSTCLOSING_STATE

OPENING_STATE

Pupils detected,
fully open

Pupils detected,
fully openned

Pupils detected,
partially openned

CLOSED_STATE

Eyelid movement

Eye apperture

Pupils lost

Closed time > Threshold

Pupils lostClosing detected

Pupils detected

Tracking position

Fig. 7. Finite State Machine for ocular measures

When the pupil ratio is above the 80% of its nominal size
or the pupils are lost, being in closing state, a transition
of the FSM to closed state is provoked, which means that
the eyes are closed. A new detection of the pupils from
the closed state produces a change to opening state or
tracking ok state, depending on the degree of opening of
the eyelid. If the pupil ratio is between the 20% and the
80% a transition to the opening state is produced, if it is
below the 20% the system pass to the tracking ok state.
Being in closed state, a transition to the tracking lost state
is produced if the closed time goes over a threshold. A
transition from opening to closing is possible if the width-
height ratio increases again. Being in opening state, if
the pupil ratio is below the 20% of the nominal ratio a
transition to tracking ok state is produced.

Ocular parameters that characterize eyelid movements
have been calculated as a function of the FSM. PERC-
LOS is calculated from all the states, except from the
tracking lost state, analyzing the pupil width-height ratio.
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Fig. 5. Tracking results for a sequence

We consider that an eye closure occurs when the pupil
ratio is above the 80% of its nominal size. Then, the eye
closure duration measure is calculated as the time that
the system is in the closed state. To obtain a more robust
measurement of the PERCLOS, we compute this running
average. We compute this parameter by measuring the
percentage of eye closure in 30 seconds window. Then,
PERCLOS measure represents the time percentage that
the system is at the closed state evaluated in 30 seconds
and excluding the time spent in normal eye blinks. Eye
closure/opening speed measures represent the amount of
time needed to fully close the eyes or to fully open the eyes.
Then, eye closure/opening speed is calculated as the time
period during which pupil ratio passes from 20% to 80% or
from 80% to 20% of its nominal size, respectively. In other
words, the time that the system is in the closing state or
opening state respectively. Blink frequency measure indi-
cates the number of blinks detected in 30 seconds. A blink
action will be detected as a consecutive transition among
the following states: closing, closed, and opening, given
that this action was carried out in less than a predefined
value. Many physiology studies have been carried out on
the blinking duration. We have used the recommendation
value derived in [26] but this could be easily modified to
conform to other recommended value. Respecting the eye
nominal size used for the ocular parameters calculation,
it varies depending on the driver. To calculate its correct
value a histogram of the eyes opening degree for the last
2000 frames not exhibiting drowsiness is obtained. The
most frequent value on the histogram is considered to be

the nominal size. PERCLOS is computed separately in
both eyes and the final value is obtained as the mean of
both.

Besides, face pose can be used for detecting fatigue
or distraction behaviors among the categories defined for
inattentive states. The nominal face orientation while
driving is frontal. If the driver’s face orientation is in
other directions for an extended period of time it is due
to distractions, and if it occurs frequently (in case of
various head tilts), it is a clear symptom of fatigue. In
our application, the precise degree of face orientation for
detecting this behaviors is not necessary because face pose
in both cases are very different to the frontal one. What
we are interested in is to detect whether the driver’s
head deviates too much from its nominal position and
orientation for an extended period of time or too frequently
(nodding detection).

This paper provides a novel solution to the coarse 3D
face pose estimation using a single un-calibrated camera,
based on the method proposed in [14]. We use a model-
based approach for recovering the face pose by establishing
the relationship between 3D face model and its two-
dimensional (2D) projections. Weak perspective projection
is assumed so that face can be approximated as a planar
object with facial features, such as eyes, nose and mouth,
located symmetrically on the plane. We have performed
a robust 2D face tracking based on the pupils and the
nostrils detections on the images. From these positions
the 3D face pose is estimated. Nostrils detection has been
carried out in a similar way as that used for the pupils’
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detection. Nostrils appear in the images as dark pixels
surrounded by not so dark pixels (skin), then being easily
detectable. The effect of dark nostrils benefits from the
position of the camera in the car.

Initially, we automatically detect a fronto-parallel face
view based on the detected pupils and nostrils, as can be
seen in figure 8. Using the distance between the detected
eyes (deyes), the distance between the center of the eyes
and the nostrils (deyes−nostrils), eyes and nostrils locations,
and some simple anthropometric proportions the scope
and the location of the face in the image is estimated.
The detected face region is used as the initial 3D planar
face pose. This method assumes that the distance from the
head to the camera remains constant and that head size
is relatively constant for all people. As depicted in figure
8, with the 2D position of the eyes and nostril centers,
and estimating the distance to head rotation point (D), we
can recover 3D face pose using basic projections. We only
calculate vertical and horizontal rotations (α,β) because
these are the most important features for our purpose.
As a function of the calculated rotation from the model
and using the speed data of the pupil movements from
the Kalman filters, we classify face direction in nine areas:
frontal, left, right, up, down, upper left, upper right, lower
left, and lower right. Given the initial face image and
its pose in the first frame, the task of finding the face
location and the face pose in subsequent frames can be
implemented as simultaneous 3D face pose tracking and
face detection. This simple technique works fairly well
for all the faces we tested, with left and right rotations
specially. A more detailed explanation about our method
was presented by the authors in [27]. As the goal with this
behavior is to detect whether the face pose of the driver is
not frontal for an extended period of time, this has been
computed using only a parameter that gives the percentage
of time that the driver has been looking at the front, over
a 30 second temporal window.

Nodding is used to quantitatively characterize one’s
level of fatigue. Several systems have been reported in
the literature to calculate this parameter from a precise
estimation of the driver’s gaze [16][20]. However, these
systems have been tested in laboratories but not in real
moving vehicles. The noise introduced in real environments
makes these systems, based on exhaustive gaze calculation,
not to work properly. In this paper, we present a new
technique based on position and speed data from the
Kalman filters used to track the pupils and the FSM.
This parameter measures the number of head tilts detected
on the last 2 minutes. We have experimentally observed
that in many occasions nodding follow a pattern along the
vertical axis (v) similar to figure 9(a). When a nodding is
taking place, the driver closes his or her eyes and the head
goes down to touch the chest or the shoulders. If the driver
wakes up in that moment, rising his head, the values of the
vertical speed of the Kalman filters will describe quite a
characteristic curve, as shown in figure 9(b). The speed
of the Kalman filters changes its sign, as the head rises.
If the FSM is in closed state or in tracking lost and the

pupils are detected again, the system saves the speeds of
the pupils trackers for 10 frames. After that, the data is
analyzed to find if it conforms to that of a nodding. If so,
the first stored value is saved and used as an indicator of
the ”magnitude” of the nodding.

Driver opens
eyes again
and rises head

Eyes closed,
tracking lost

v

t
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el
s)

(a)
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speed

mag

t

(b)

Fig. 9. Nodding curves

Finally, one of the remarkable behaviors that appear
on drowsy drivers is fixed gaze. An fatigued driver looses
the focus of the gaze, not paying attention to any of the
elements of the traffic. This lost of concentration usually
takes place before other sleepy behaviors do, such as
nodding. As in the parameter explained above, the existing
systems calculate this parameter from a precise estimation
of the driver’s gaze and, consequently, experience the same
problems. In order to develop a method to measure this
behavior in a simple and robust way, we present a new
technique based on the data from the Kalman filters used
to track the pupils.

A driver in good condition moves his eyes frequently,
focusing to the changing traffic conditions, particularly if
the road is busy. This has a clear reflection on the dif-
ference between the estimated position from the Kalman
filters and the measured ones, as can be seen in figure
10(a), where fixed gaze behavior is present from 150 to
250 seconds.

Besides, the movements of the pupils for a drowsy driver
present different characteristics. Our system monitors the
position on the x coordinate. Coordinate y is not used, as
the difference between drowsy and awake driver is not so
clear. The computation of this parameter is based on two
temporal windows. On the first one, lasting two seconds,
the values in every frame are stored. At the end of it,
mean and standard deviation are calculated. If the results
for both eyes fall within predefined limits, that window
will be computed as ’1’, and as ’0’ otherwise, as shown on
figure 10(b). The second window computes the average of
these values (‘0’ or ‘1’) during the last 60 seconds figure
10(c), this being the parameter passed to the next stage.
This way, the fix gaze parameter is computed locally in a
long period of time allowing the leeway of pupil positions
over time.

This fixed gaze parameter may suffer from the influence
of vehicle vibrations or bumpy roads. Modern cars have
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Fig. 8. Recovering the 3D face pose from 2D projections

reduced vibrations to a point that the effect is legible on
the measure. The influence of bumpy roads depends on
their particular characteristics. If bumps are occasional,
it will only affect few values, these will not represent
an important quantity in the overall measure. On the
other hand, if bumps are frequent and their magnitude
is high enough, the system will probably fail to detect
this behavior. Fortunately, the probability for a driver
to fall asleep is significantly lower in very bumpy roads.
The results obtained for all the test sequences with this
parameter are encouraging. In spite of using the same a
priori threshold for different drivers and situations, the
detection was always correct. Even more remarkable was
the absence of false positives.
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Fig. 10. Measures for the ”fixed gaze” parameter

D. Driver vigilance computation

This section describes the method to determine the
driver’s visual inattention level from the parameters ob-
tained in the previous section. This process is very com-
plicated because several uncertainties may be present on it.
First, fatigue is not observable and it can only be inferred
from the available information. In fact, this behavior can
be regarded as the result of many contextual variables such
as environment, health, and sleep history. To effectively
monitor it, a system that integrates evidences from multi-
ple sensors is needed. In the present work, several fatigue
visual behaviors are subsequently combined to form an
inattentive parameter that can robustly and accurately
characterize one’s vigilance level. The fusion of the pa-
rameters has been obtained using a fuzzy system. We have
chosen this technique for its well known linguistic concept
modelling ability. The fuzzy rule expression is close to
expert natural language. Then, a fuzzy system manages
uncertain knowledge and infers high level behaviors from
the observed data. On the other hand, as it is a universal
approximator, fuzzy inference system can be used for
knowledge induction processes. The objective of our fuzzy
system is to provide a driver’s inattentive level (DIL)
from the fusion of several ocular and face pose measures,
along with the use of expert and induced knowledge. This
knowledge has been extracted from the visual observation
and the data analysis of the parameters in some simulated
fatigue behavior carried out in real conditions (driving a
car) with different users. The simulated behaviors have
been done according to the physiology study of the US
Department of Transportation, presented in [5]. This pa-
per does not delve into the psychology of driver visual
attention, rather it merely demonstrates that with the
proposed system, it is possible to collect driver information
data and infer whether the driver is attentive or not.

The first step in the expert knowledge extraction pro-
cess is to define the number and nature of the variables
involved in the diagnosis process according to the domain
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expert experience. The next variables are proposed after
appropriate study of our system: PERCLOS, eye closure
duration, blink frequency, nodding frequency, fixed gaze
and frontal face pose. Eye closing and opening variables
are not being used in our input fuzzy set because they
mainly depend on factors such as segmentation, correct
detection of the eyes and take place in such a period of time
comparable in length with that of the image acquisition.
As a consequence, they are very noisy variables. As our
system is adaptive to the user, the ranges of the fuzzy
selected inputs are approximately the same for all users.
The fuzzy inputs are normalized and different linguistic
terms and its corresponding fuzzy sets are distributed in
each of them using induced knowledge based on the hierar-
chical fuzzy partitioning (HFP) method [28]. Its originality
lays in not yielding a single partition, but a hierarchy
including partitions with various resolution levels based on
automatic clustering data. Analyzing the fuzzy partitions
obtained by HFP, we determined that the best suited fuzzy
sets and the corresponding linguistic terms for each input
variable are those shown in table I. For the output variable
(DIL), the fuzzy set and the linguistic terms were manually
chosen. The inattentiveness level range is between 0 and 1,
with a normal value up to 0.5. When its value is between
0.5 and 0.75, driver’s fatigue is medium, but it the DIL
is over 0.75 the driver is considered to be fatigued, and
an alarm is activated. Fuzzy sets of triangular shape were
chosen, except at the domain edges, where they were semi-
trapezoidal.

Based on the above selected variables, experts state dif-
ferent pieces of knowledge (rules) to describe certain situa-
tions connecting some symptoms with a certain diagnosis.
These rules are of form “If condition, Then conclusion”,
where both premise and conclusion use the linguistic terms
previously defined, as in the following example:

1) IF PERCLOS is large AND Eye Closure Duration

is large, THEN DIL is large

In order to improve accuracy and system design, au-
tomatic rule generation and its integration in the expert
knowledge base were considered. To ease such an integra-
tion the generated rules use the readable fuzzy partitions
already designed. The process of generating rules from
data is called induction. It aims at producing general
statements, expressed as fuzzy rules in our case, valid for
the whole set, from partial observations obtained from
some real experiments. As the data are likely to give
a good image of interactions, induced rules may yield
complementary pieces of knowledge. A lot of methods
are available in the fuzzy literature [29]. We restrict our
interest to the ones which generate rules that share the
same fuzzy sets (Wang and Mendel (WM)[30], Fast Pro-
totyping Algorithm (FPA)[31] and Fuzzy Decision Trees
(FDT)[32]). Among them we chose the FDT with pruned
method (FDT+P) because it produces the best quality,
the more interpretable and accurate knowledge base.

Induced rules with FDT+P were integrated into the
expert knowledge base. As a result the rule base consists

of 94 rules, 8 expert rules and 86 induced ones. During
this last step, the fundamental properties of the rule base
have to be guaranteed: consistency, lack of redundancy and
interpretability. Both kinds of rules use the same linguistic
labels thanks to the previously defined common universe.
Therefore rule comparison is made at linguistic level only.

First of all, a consistency analysis [33] of the knowledge
base is made in order to detect conflicts at linguistic level.
Afterwards a simplification process is applied with the
goal of achieving a more compact knowledge base, with
a smaller size to improve interpretability, mantaining the
accuracy of the original knowledge base. The simplification
process is described in detail in [34].

This paper only describes the simplification process re-
sults in the real problem under consideration. Please refer
to the cited literature for a complete description. The final
knowledge base is more compact, with a smaller number
of rules which are incomplete and more general, and a
smaller number of labels. We have obtained a rule base
with 32 rules, which are easily interpretable. According
to these rules, three variables (fixed gaze, PERCLOS and
eye closure duration) are crucial for determining driver’s
fatigue. Two induced rules are shown below:

1) IF PERCLOS is small AND Eye Closure Duration

is small AND Face Position is medium AND Nod-

ding Frequency is small AND Blink Frequency is
mediumAND Fixed Gaze is small, THEN DIL is
small

2) IF PERCLOS is medium large AND Eye Clo-

sure Duration is medium AND Blink Frequency is
medium AND Fixed Gaze is large, THEN DIL is
large

The fuzzy system implementation was done using the
licence-free tool KBCT (Knowledge Base Configuration
Tool) [35] developed by the intelligent systems group of the
Technical University of Madrid (UPM). In the next section
we present experimental results obtained with this tool
with the following basic fuzzy options: minimum operator
as connective AND, maximum as aggregation method and
centre of area as defuzzification method. All induced rules
have the same weight.

IV. Experimental results

The goal of this section is to experimentally demonstrate
the validity of our system in order to obtain fatigue
behaviors in drivers. Firstly, we show some details about
the recorded video sequences used for testing, then, we
analyze the parameters measured for one of the sequences.
Finally, we present the performance of the detection of
each one of the parameters, and the overall performance
of the system.

A. Test Sequences

Ten sequences were recorded in real driving situations
over a highway and a both-senses road. Each sequence
was obtained for a different user. The images were ob-
tained using the system explained in section III-A. The
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TABLE I

Fuzzy variables

Variable Type Range Labels Linguistic terms

PERCLOS In [0.0, 1.0] 5 small, medium small, medium, medium large, large
Eye closure duration In [1.0 - 30.0] 3 small, medium, large

Blink freq. In [1.0 - 30.0] 3 small, medium, large
Nodding freq. In [0.0 - 8.0] 3 small, medium, large
Face position In [0.0 - 1.0] 5 small, medium small, medium, medium large, large
Fixed gaze In [0.0 - 0.5] 5 small, medium small, medium, medium large, large

DIL Out [0.0 - 1.0] 5 small, medium small, medium, medium large, large

drivers simulated some drowsy behaviors according to the
physiology study of the US Department of Transportation
presented in [5]. Each user drove normally except in one
or two intervals where the driver simulated fatigue. The
length of the sequences and the fatigue simulation intervals
is shown in table II. All the sequences were recorded at
night except for sequence number 7 that was recorded
at day, and sequence number 5 that was recorded at
sunset. Sequences were obtained with different drivers not
wearing glasses, with the exception of sequence 6, that
was recorded for testing the influence of the glasses in real
driving conditions.

B. Parameter measurement for one of the test sequences

The system is currently running on a PC Pentium4 (1,8
Ghz) with Linux kernel 2.4.24 in real time (25 frames/s)
with a resolution of 640x480 pixels. Average processing
time per frame (both even and odd fields) is 11.43ms.
Figure 11 depicts the parameters measured for sequence
number 9. This is a representative test example with a
duration of 465 seconds where the user simulates two
fatigue behaviors separated by an alertness period. As can
be seen, until second 90, and between the seconds 195 and
360, the DIL parameter is below 0.5 indicating an alertness
state. In these intervals the PERCLOS is low (below 0.15),
eye closure duration is low (below the 200 ms), blink
frequency is low (below 2 blinks per 30-second window)
and nodding frequency is zero. These ocular parameters
indicate a clear alert behavior. The frontal face position
parameter is not 1.0, indicating that the predominant
position of the head is frontal, but that there are some
deviations near the frontal position, typical of a driver
with a high vigilance level. The fixed gaze parameter is low
because the eyes of the driver are moving caused by a good
alert condition. The DIL parameter increases over the alert
threshold during two intervals (from 90 to 190 and from
360 to 565 seconds) indicating two fatigue behaviors. In
both intervals the PERCLOS increases from 0.15 to 0.4,
the eye closure duration goes up until 1000 ms, and the
blink frequency parameter increases from 2 to 5 blinks.
The frontal face position is very close to 1.0 because the
head position is fix and frontal. The fixed gaze parameter
increases its value up to 0.4 due to the narrow gaze in
the line of sight of the driver. This last variation indicates
a typical lost of concentration and it takes place before
the other sleepy measurements, as can be observed. The
nodding is the last fatigue effect to appear. In the two

fatigue intervals a nodding occurs after the increasing of
the other parameters, indicating a low vigilance level. We
must remark that this last parameter is calculated over a
temporal window of 2 minutes, this is the reason why its
value remains stable during this time.
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Fig. 11. Parameters measured for the test sequence number 9

This section described an example of parameters evolu-
tion for two fatigue behaviors and one driver. Then, we
analyzed the behaviors of other drivers in different cir-
cumstances, according to the video tests explained above.
The results obtained are very similar to those shown for
sequence number 9. Overall results of the system are
explained in what follows.

C. Parameter performance

The general performance of the measured parameters for
a variety of environments with different drivers, according
to the test sequences, is presented in table III. Performance
was measured by comparing system performance to results
obtained by manually analyzing the recorded sequences,
on a frame-by-frame basis. For each parameter, the correct
percentage per sequence is depicted. This includes correct
detection and false positives. The last column depicts
the total correct percentage for all sequences excluding
sequence number 6 (driver wearing glasses) and sequence
number 7 (recorded by day). Then, this column shows the
parameter detection performance of the system for optimal
situations (driver without glasses driving at night). As can
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TABLE II

Length of simulated drowsiness sequences

Seq. Num. Drowsiness Behavior time(sec) Alertness Behavior time(sec) Total time(sec)

1 394 (2 intervals:180+214) 516 910
2 90 (1 interval) 210 300
3 0 240 240
4 155 (1 interval) 175 330
5 160 (1 interval) 393 553
6 180 (1 interval) 370 550
7 310 (2 intervals:150+160) 631 941
8 842 (2 intervals:390+452) 765 1607
9 210 (2 intervals:75+135) 255 465
10 673 (2 intervals:310+363) 612 1285

be seen, the performance gets considerable worse by day
and it dramatically decreases when drivers wear glasses.

PERCLOS results are quite good, obtaining a total
correct percentage of 93.12%. It has been found to be a
robust ocular parameter for characterizing driver fatigue.
However, it may fail sometimes, for example, when a
driver falls asleep without closing her eyes. Eye closure
duration performance is a little worse than that of the
PERCLOS(84.37%), because the correct estimation of the
duration is more critical. The variation on the intensity
when the eye is partially closed with regard to the in-
tensity when it is open complicates the segmentation and
detection. This causes the frame count for this parameter
to be usually less than the real one. These frames are
considered as closed time. Measured time is slightly over
the real time, as a result of delayed detection. Performance
of blink frequency parameter is about 80% because some
quick blinks are no detected with a frame rate of 25
frames per second. Then, the three explained parameters
are clearly correlated almost linearly, being PERCLOS the
most robust and accurate one.

Nodding frequency results are the worst (72.5%), as the
system is not sensible to noddings in which the driver
rises her head and then opens her eyes. To reduce false
positives, the magnitude of the nodding (i.e., the abso-
lute value of the Kalman filter speed), must be over a
threshold. In most of the non-detected noddings, the first
situation took place, while the second limitation did not
have any influence on any of them. The ground truth
for this parameter was obtained manually by localizing
the noddings on the recorded video sequences. It is not
correlated with the three previous parameters and it is
not robust enough for fatigue detection. Consequently, it
can be used as a complementary parameter to confirm the
diagnosis established based on other more robust methods.

The evaluation of the face direction provides a measure
of alertness related to drowsiness and distractions. This
parameter is useful for both detecting the pose of the
head out of the front direction and the duration of the
displacement. The results can be considered fairly good
(87.5%) for a simple model that requires very little com-
putation and not manual initialization. The ground truth
in this case was obtained by manually looking for periods
in which the driver is not clearly looking at front in the
video sequences, and comparing their length to that of

the ones detected by the system. There is not a clear
correlation between this parameter and the ocular ones
for fatigue detection. This is the most important cue in
case of distraction detection. Performance of the fixed
gaze monitoring is the best of the measured parameters
(95.62%). The maximum values reached by this parameter
depend on users’ movements and gestures while driving,
but a level above 0.05 is always considered to be an indica-
tor of drowsiness. Values greater than 0.15 represent high
inattentiveness probability. This parameter did not have
false positives and is largely correlated to the frontal face
direction one. On the contrary, it is not clearly correlated
to the rest of the ocular measurements. The ground truth
for this parameter was manually obtained by analyzing
eye movements frame by frame for the intervals where
a fixed gaze behavior was being simulated. Fixed gaze
and PERCLOS have been found to be the best detectable
parameters for characterizing driver fatigue.

All parameters presented above are fused in the fuzzy
system to obtain the DIL for final evaluation of drowsiness.
There is some delay between the moment when the driver
starts his fatigue behavior simulation and when the fuzzy
system detects it. This is a consequence of the windows
span used in parameter evaluation. Correct percentage for
this output parameter is very high (98%). It is higher
than the obtained using only the PERCLOS, for which
the correct percentage is about the 90% for our testbench.
This is due to the fact that fatigue behaviors are not the
same for different drivers. Then, parameters evolution and
absolute values from the visual cues differ from user to
user. Another important fact is the delay between the
appearance of fatigue and its detection. Each parameter
responds to a different stage in the fatigue behavior. For
example, fixed gaze behavior appears before PERCLOS
starts to increase, thus rising the DIL to a value where a
noticiable increment of PERCLOS would rise an alarm in
few seconds. This is extensible to the other parameters.
Using only the PERCLOS would require much more time
to rise an alarm (tens of seconds), specially in drivers
for which the PERCLOS increases more slowly. Our sys-
tem provides an accurate characterization of a standard
driver’s level of fatigue, using multiple visual parameters
to resolve the ambiguity present in the information from
a single parameter. Additionally, the system performance
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TABLE III

Parameter detection performance

Parameters
Correct percentage per sequence Total correct

percentage1 2 3 4 5 6 7 8 9 10

PERCLOS 90 90 95 95 95 25 50 95 95 90 93.12%

Eye closure duration 90 80 85 90 85 20 50 80 85 80 84.37%

Blink freq. 75 75 85 80 85 0 30 85 80 75 80%

Nodding freq. 70 60 80 80 60 0 20 70 100 60 72.5%

Face position 100 70 85 95 90 0 50 85 90 85 87.5%

Fixed gaze 100 90 95 95 95 20 60 95 95 100 95.62%

is very high in spite of the partial errors associated to
each input parameter. This was achieved using redundant
information. The system performance was evaluated by
comparing the intervals where the DIL parameter was
above 0.75 to the intervals, manually analyzed over the
video sequences, in which the driver simulates fatigue be-
haviors. This analysis consisted in a subjective estimation
of drowsiness by human observers, based on the Wierwille
test [23].

V. Conclusions and future works

We developed a non-intrusive prototype computer vision
system for real-time monitoring of driver’s vigilance. It
is based on a hardware system, for real time acquisition
of driver’s images using an active IR illuminator, and
the implementation of software algorithms for real-time
monitoring of the six parameters that better characterize
the fatigue level of a driver. These visual parameters are
PERCLOS, eye closure duration, blink frequency, nodding
frequency, face position and fixed gaze. In an attempt to
effectively monitor fatigue, a fuzzy classifier was imple-
mented to merge all these parameters into a single Driver
Inattentive Level. Monitoring of other inattention cate-
gories would be possible using this method. The system
is fully autonomous, it can initialize automatically, and
reinitialize when necessary. It was tested with different
sequences recorded in real driving condition with different
users during several hours. In each of them, several fatigue
behaviors were simulated during the test. The system
works robustly at night, for users not wearing glasses,
yielding and accuracy percentage close to 100%. Perfor-
mance of the system decreases at day, especially in bright
days, and at the moment it does not work with drivers
wearing glasses.

The results and conclusions obtained are an approach
to the drowsiness detection problem and they will be
completed in the future with actual drowsiness data. In
the next future, we have the intention of testing the system
with more users for long periods of time, to obtain real
fatigue behaviors. With this information we will generalize
our fuzzy knowledge base. Then, we would like to improve
our vision system in order to solve the problems of daytime
operation, and to improve the solution for drivers wearing
glasses. On the other hand, we plan to add two new sensors
(a steering wheel and a lateral position sensor) for fusion

with the visual information to achieve correct detection,
specially at daytime. Finally, this system could be easily
extended to other kind of vehicles, such as aircrafts, trains,
subways, etc, helping to improve safety in transportation
systems.
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