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Abstract—This paper presents a system for evalu-
ating the attention level of a driver using computer
vision. The system detects head movements, facial
expressions and the presence of visual cues that are
known to reflect the user’s level of alertness. The
fusion of these data allows our system to detect
both aspects of inattention (drowsiness and distrac-
tion), improving the reliability of the monitoring over
previous approaches mainly based on detecting only
one (drowsiness). Head movements are estimated by
robustly tracking a 3D face model with RANSAC
and POSIT methods. The 3D model is automatically
initialized. Facial expressions are recognized with a
model-based method, where different expressions are
represented by a set of samples in a low-dimensional
manifold in the space of deformations. The system is
able to work with different drivers without specific
training. The approach has been tested on video
sequences recorded in a driving simulator and in real
driving situations. The methods are computationally
efficient and the system is able to run in real-time.

I. Introduction

Driver inattention has been identified by various stud-
ies as a primary cause of traffic accidents, accounting for
at least 25% of them [1]. According to the U.S. National
Highway Traffic Safety Administration (NHTSA), falling
asleep while driving is responsible for at least 100,000
automobile crashes annually [2], [3]. An annual average of
roughly 70,000 nonfatal injuries and 1,550 fatalities result
from these accidents. Moreover, these statistics do not
deal with accidents caused by driver distraction either,
which is believed to be a larger problem.

Driver inattention generally defines a reduced user
vigilance level. Inattention status can be classified [4] into
drowsiness and distraction. Distraction is usually divided
into cognitive distraction, i.e. when driver thinks about
something different than the driving task [5], and visual
distraction, namely when the driver is not looking to the
road, but paying attention to a different target, such as
the radio system or a navigation device.

The research community has proposed different sys-
tems for monitoring a driver’s level of vigilance, focusing
mainly on fatigue detection. Various techniques have
been used: physiological measures [6], steering wheel
movements and lateral position on the lane [7] or com-

puter vision [8], [9], [10], [11], [12]. This last approach has
been favoured, as it is non-intrusive to the driver. Differ-
ent studies [4], [13] have identified cues that indicate the
presence of drowsiness, such as PERCLOS (percentage
eye closure), blink frequency, gaze direction, and facial
expressions (yawning, nodding, eyebrows rising). Most
works detect more than one of those cues, and fuse the
parameters for improved robustness [11], [12].

Detection of the mentioned cues on a video sequence
is a challenging task, as the driver appearance may
change from day to day, fast and severe illumination
changes take place, and the face of the driver may become
occluded due to head turns, clothing or the driver’s
hands. Different methods have been used to locate and
track the face of the driver on the images. Active near-
infrared illumination was used in [8], [11] to ease the
location of the driver’s eyes. In [14] the authors proposed
the use of Active Appearance Models [15] to model the
driver’s face, and in [16] a Bayesian network is used for
tracking facial landmarks.

Face detection and pose estimation has been a very
active research field in computer vision, and a compre-
hensive number of methods have been developed [17].
Face pose estimation algorithms have been recently pre-
sented in [18], [19], [20], [21]. The FaceLab software [22]
also estimates the face pose. These methods have been
shown to work in a laboratory environment, and [21], [22]
have been demonstrated in a real vehicle. However, the
FaceLab software needs some degree of training for each
user.

Most of the systems mentioned above have a strong
focus on fatigue detection. Distraction, either visual
or cognitive has received much less work, in part for
its complexity [23] as new sources of distraction are
emerging (such as in-vehicle information systems, IVIS).
Also, although many psychological studies have been
made, especially related to cell phone use [24], driver
distraction trends are not completely understood yet. As
a consequence, development of systems able to detect
distraction has been modest.

In this paper we propose a system that detects both
visual distractions and sleepiness. Visual distractions
are detected by estimating the face pose of the driver,



and sleepiness by detecting the presence of expressions
such as yawing and eyebrows rising, and by calculating
the PERCLOS parameter. The system is able to work
with different users without prior training. The only
requirement is for the driver to be in frontal position to
the camera system for a few frames during initialization.
This approach is similar to [19] in the automatic model
initialisation step, but our system does not require the
use of near-IR to locate the eyes, and relies on various
facial features to robustly track the driver’s face, even
when the eyes are occluded.

II. System architecture

Our system uses two separated subsystems that work
independently to estimate the face pose and to detect
expressions. While this increases processing time, it im-
proves the overall robustness of the system as the face is
tracked redundantly. Both trackers share the initialisa-
tion phase, and they can access the results of the other
tracker in case they get lost, which eases the recovery
of the face position. The initialisation phase is a face
detector based on Viola&Jones algorithm [25]. A diagram
of the system architecture is shown in figure 1.
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Fig. 1. System architecture

Images of the driver’s face are captured using a cal-
ibrated stereo camera system, mounted on the car’s
dashboard in front of the driver. The facial expressions
analysis subsystem and the estimation of the PERCLOS
parameter work over only one of the images, while the
face pose algorithm uses both.

After each frame has been processed, the face ex-
pression subsystem outputs the probabilities of several
expressions taking place in that frame, and the face pose
subsystem yields the estimated face pose. The latter
result is used to locate the eyes within the face in one
of the frames, and to estimate their degree of openness
to calculate the PERCLOS parameter. This parameter
is calculated in a similar fashion to [11]. These data
are evaluated over a temporal window to smooth the
system response, and then added to obtain a unified
driver inattention level. If the resulting value is over a

threshold, the driver is considered to be inattentive, and
an alarm is risen.

III. Facial Expressions Analysis

The subsystem presented in this section is able to ro-
bustly track a human face and recognise the facial expres-
sions in an unconstrained environment with sharp illumi-
nation changes, such as those occurring on a driver’s face.
To achieve this goal we use a subspace-based tracker,
which is able to track the face while lighting is changing
in direction and intensity.

A. Face tracking

Let I(x, t) be the image acquired at time t, where
x is a vector representing the co-ordinates of a point
in the image, and let I(x, t) be a vector storing the
brightness values of I(x, t). Let f(x,µ) be a warping
function representing the rigid motion of the face, µ

being the vector of rigid motion parameters. And let B

represent the illumination subspace of the face. The final
brightness constancy equation is given by

I(f(x,µt), t) = Ī(x) + [Bct](x) ∀x ∈ F ,

where vector ct are the illumination appearance param-
eters, k = dim(ct), and F represents the set of pixels
of the face used for tracking. In our experiments we
have built an average model of illumination variations
using examples comming from the PIE database [26].
The most remarkable characteristic of this appearance
model is that it is subject independent and can be used
for tracking any subject.

Tracking a face consists of estimating, for each image in
the sequence, the values of the motion µ, and appearance
c, parameters which minimise the error function

E(µ, c) = ||I(f(x,µt), t) − Ī − [Bct](x)||2. (1)

We use a Gauss-Newton procedure to solve this min-
imisation problem, using matrix factorization to reduce
the computational cost of the minimization [27].

In our experiments we use a RTS (rotation, transla-
tion and scale) motion model, so µ = (tu, tv, θ, s), and
f(x,µ) = sR(θ)x + t, where x = (u, v)⊤, t = (tu, tv)⊤

and R(θ) is a 2D rotation matrix.

B. Facial expressions recognition

The classification procedure used for facial expression
recognition is based on a user-and-illumination-indepen-
dent facial expression model. This model is built by
tracking a set of sequences from the Cohn-Kanade data
base [28]. We used the tracker introduced in the previous
subsection to process the sequences from the data base.
Once motion and illumination parameters have been
estimated we can compute an illumination normalised
version of the rectified image, I(f(x,µt), t). Using illu-
mination coefficients we can compute Î(f(x,µt), t) =
I(f(x,µt), t) − Bct. The dimension of the illumination



normalised images is high (61 × 72 pixels images) com-
pared with the number of samples for training. We
perform Principal Component Analysis (PCA) and then
Linear Discriminant Analysis (LDA) to reduce the di-
mensionality of the input data. The PCA+LDA sub-
space will be n − 1-dimensional when we have n facial
expressions. Trajectories associated with the same pro-
totypical facial expression represent roughly similar facial
deformations and, consequently, will be located in nearby
positions in the PCA+LDA subspace.

We recognise facial expressions using a probabilistic
procedure which combines the prior information stored in
the expression manifold with the incoming data obtained
from a temporally ordered sequence of images of a face.
Let I1, . . . , It be a temporally ordered image sequence
of a face wearing one or more facial expressions and
x1, . . . ,xt be the temporally ordered set of co-ordinates
of the image sequence in the facial expression subspace,
which we will denote X1:t. Let Gt = {g1, g2, . . . , gc}
be a discrete random variable representing the facial
expression at time t and Xt be a continuous random
variable associated to the co-ordinates in the facial ex-
pression subspace of the image acquired at time t. We
will denote by P (gi) ≡ P (Gt = gi) the probability
that the discrete random variable Gt takes value gi and
by p(x) ≡ p(Xt = x) the probability density function
(p.d.f.) of the continuous variable x at time t.

The facial expression g(t) at time t is obtained as the
maximum of the posterior distribution of Gt given the
sequence of images up to time t

g(t) = arg max
i

{P (Gt = gi|X1:t)},

which we compute using a recursive Bayesian filter. A
more detailed explanation of this method can be found
in [27].

IV. Face Pose Analysis

Our approach to face pose estimation works by con-
structing and tracking a 3D model of the face. We will
present its main characteristics in this section, and refer
to [29] for additional details. The model is formed by
a set of 3D points on the face. The 2D projections of
these points on each camera are tracked on each frame,
using the Simultaneous Modeling and Tracking (SMAT)
[30] algorithm. From the projections, the 3D face pose is
obtained, using the POSIT algorithm for pose extraction
and RANSAC for outlier point elimination. After a set of
correctly tracked points is obtained, the position of the
outlier points is set accordingly to the estimated pose.

A. 3D Face model creation

The first step to create the model is to localize the
user’s face. As mentioned above, Viola & Jones [25]
algorithm is used on both cameras to localize the position
of a frontal face within the images. The face model is
defined by thirty points that are tracked over succes-
sive frames. To choose appropriate points, a predefined

standard face pattern is scaled and placed over the
detected inner box containing the face on the left camera
image. These points may not correspond to any good
feature on the user’s face to be used for tracking, so
a characteristic feature close to each pattern point is
chosen for tracking, as shown in figure 2. The Harris
algorithm [31] is used to locate points with good contrast
and tracking characteristics. Stereo correspondences of
these points over the other camera are used to calculate
its 3D coordinates.

(a) Left image (b) Right image

Fig. 2. Model Construction

We use a coordinate system affixed to the right camera
to define the face model. The model points are referenced
to another coordinate system, with origin on the central
point of the model. The face pose is characterized by
a translation within the camera coordinate system, and
a pointing vector. This vector is defined as the normal
vector to the face, and at the moment of the model
creation is set to vini = (x, y, z) = (0, 0,−1).

B. Face tracking using SMAT

The Simultaneous Modeling and Tracking (SMAT) [30]
is a recently developed technique for tracking objects in
sequences without any previous training. SMAT works by
building a library of exemplars obtained from previous
frames in the sequence. The exemplars in the library,
image patches in our case, are clustered based on their
relative distance, and the medians of the clusters are
used for fitting the model to the next frame. A new
exemplar is included in one of the clusters depending on
the distance to its medians, or a new cluster is created if
the new exemplar is too far away from the existing ones.
As a group of similar exemplars, each of these clusters
will approximately represent different appearances of the
same feature of the object. The resulting mixture model
is fitted to the next frame.

The formulation of the SMAT algorithm is indepen-
dent of the definition of distance and the minimiza-
tion method used. We have used Zero-mean Normalized
Cross-Correlation (ZNCC) and Sum of Squared Differ-
ences (SSD) as distances, and Gauss-Newton and the
Nelder-Mead simplex method [32] for the minimization
process.



C. Pose estimation

After the position of the tracking points has been
updated for both the left and right frames independently,
the 3D face pose is to be estimated from the 2D pro-
jection of each point. However, the matching process
may not succeed for all points, and can result in errors
or drifting for some of them. These errors negatively
influence the accuracy of the estimated pose. Thus, a
robust optimization method is required to estimate the
best matching 3D face pose, that would detect as outliers
the points that have been incorrectly tracked, so they
can be safely discarded. We also consider that points
that have been correctly tracked may have some random
noise. The RANSAC algorithm is used to eliminate the
outliers. 3D pose is obtained using DeMenthon’s four
point iterative pose estimation algorithm (POSIT) [33].

In each RANSAC iteration, seven points are randomly
selected from the model, and used to calculate the pose
(R and T matrix) using the POSIT algorithm. With
this R and T, all 3D original points of the model
are projected over the image plane, and the Euclidean
distance from the tracking point to the corresponding
projected point is calculated. If this distance is less than
a threshold, this point is considered to be correct, and
marked as an inlier. The RANSAC algorithm runs for
enough iterations to guarantee a 99% of success with 50%
of outliers.

This process is performed over the left and right frames
independently, and the final pose estimation is calculated
from the pose estimations as a weighted sum depending
on the number of inliers. In case the number of inliers of
any of the cameras is less than a threshold, set to half
the total number of points, that estimation is discarded
and the estimation of the other camera is used.

D. Tracking Failure detection and Recovery

Points identified as outliers by the RANSAC algorithm
are moved to a corrected position, so they can be tracked
on the following frames. The new position of the points is
calculated by re-projecting the 3D model on both camera
planes with the final estimated pose, Rmodel and Tmodel.

V. Experimental Results

The method has been tested on videos recorded in a
driving simulator and in a moving car. Two IEEE1394
cameras captured 25 frames per second. The algorithms
run on a Core2 Duo at 2.4GHz running GNU/Linux.
Length of the sequences ranges from 1 to 10 minutes,
and total length is over an hour.

In this section we present the results for the different
subsystems, and summarise the accuracy of the unified
driver inattention level estimation.

A. Facial expression detection results

The training images for the face expressions classifier
were obtained from the Cohn-Kanade data base [28]. We
have trained a classifier for the upper face and another

one for the lower face although the tracker uses the whole
face model.

Figure 3 shows a few frames from a test sequence, and
results of the expression recognition process for that same
sequence are shown in figure 4.

From the test sequences analysis we can conclude
that tracking is successful when the subject is driving
normally (e.g., from frame 900 to 939 in the sequence
shown in figure 3), and when some head motion appears
(e.g., frames 1158 to 1180). During driving, illumination
conditions change but system performance is not severely
affected by these changes.

The expression model includes the neutral facial ex-
pression, yawn and eyebrows rising. These expressions
are recognised properly. In the test sequences, the driver
performed gestures around the eyes region including
rising his eyebrows several times, trying to maintain
himself awake, as shown in frames 972 and 1114 in figure
3. The drivers also yawned frequently and these gestures
were correctly recognised (see from frame 1004 to 1050 in
figure 4). In some situations the system does not give a
correct classification. This is mainly because of tracking
inaccuracies, as is the case for frame 945 where a sudden
nodding takes place, and frame 1128.

B. Face Pose estimation results

The 3D model used by the face pose estimation al-
gorithm is constructed over the first frame. The system
chooses up to 30 characteristic tracking points to built
the model. Pose is correctly estimated over face rotations,
with Mean Absolute Errors (MAS) below 5◦ for pitch
and roll angles. Points that are appear rotated over ±60◦

are considered occluded, and not taken into account for
pose estimation. The more the face rotates, the more
points become hidden, and thus the accuracy of the pose
estimation falls. With this limitation, the system is able
to track the face correctly up to ±40◦ degrees. Results
for a video sequence are shown in figure 5.

C. Driver inattention level results

An unified driver inattention level is estimated from
the results of the two subsystems. As can be observed in
figures 4 and 5, the evolution in time of the estimated
values is substantially different, and they have to be
equalised accordingly before being combined. This is
done by using a moving time window, that computes the
total time expressions have been detected for in the last
30 seconds. This window width is the same used to calcu-
late PERCLOS [11]. These values are then added to the
other parameters, and if it is found to be over a threshold,
the driver is considered to be inattentive to the road. This
threshold has been determined experimentally.

Performance of the system in detecting inattentive
events for the test sequences is about 92%, improving
the results of the two subsystems alone.
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Fig. 3. Tracking results for a realistic sequence. Blue squares are the face detector results (used when the appearance tracker get lost).
Red lines are the results of the appearance tracker.
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Fig. 4. Facial expression recognition in a realistic image sequence.
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Fig. 5. Tracking and Pose estimation of the face of a driver A under day light driving conditions.



VI. Conclusions

This paper has presented a system for analysing the
inattention level of a driver. Visual distraction detec-
tion is based on head pose estimation, and sleepiness
detection relies on the PERCLOS parameter and facial
expressions. The system is able to robustly track the face
of the driver using appearance based methods, recognise
facial expressions and estimate the pose of the head.
The system also monitors the driver’s eyes calculate the
PERCLOS parameter. Estimated values are added to
obtain a unified parameter. The system is able to run
in real time.

The algorithms have been tested in video sequences
recorded in a simulator and in a moving car. We plan
to conduct several multi-hour tests to obtain a better
evaluation of the system performance. We will continue
the development of the system by incorporating more
expressions to the face expression detector, and by in-
cluding additional parameters along to PERCLOS, such
as fixed gaze, and blink detection. More advanced data
fusion techniques will also be studied.
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