Real-Time Wide-Angle Stereo Visual SLAM on Large Environments using SIFT Features Correction

David Schleicher, Luis M. Bergasa, Member, IEEE, Rafael Barea, Elena López, Manuel Ocaña, Member, IEEE, Jesús Nuevo

Abstract—This paper presents a new method for real-time SLAM calculation applied to autonomous robot navigation in large environments without restrictions. It is exclusively based on the information provided by a cheap wide-angle stereo camera. Our approach divide the global map into local sub-maps identified by the so-called SIFT fingerprint. At the sub-map level (low level SLAM), 3D sequential mapping of natural landmarks and the robot location/orientation are obtained using a top-down Bayesian method to model the dynamic behavior. A high abstraction level to reduce the global accumulated drift, keeping real-time constraints, has been added (high level SLAM). This uses a SIFT correction method based on the sub-maps' fingerprints. A comparison of the low SLAM level using our method and SIFT features has been carried out. Some experimental results using a real large environment are presented.

I. INTRODUCTION

Real-time Simultaneous Localization and Mapping (SLAM) is a key component in robotics. In last years several approaches have been used [1][2]. Recent researches have demonstrated that camera-based SLAM is very useful in domains where the goal is to recover 3D camera position in real-time moving rapidly in normal human environments, based on mapping of sparse visual features, potentially with minimal information about motion dynamics [3]. In [4], a 3D visual SLAM method, based on a stereo camera and SIFT (Scale Invariant Feature Transform) features, is presented. Currently, the main goal in SLAM research is to apply consistent, robust and efficient methods for large environments. One of the main milestones is to achieve large closing loops in robot paths running in real-time.

Several approaches can be found to solve the related issues by using the metric point of view, the topological point of view or a mixed one. One example of the last one is described in [5]. This solution tries to build a topological map composed by several simple metric maps. After that, as long as the robot explores new places, the algorithm decides whether to build a new sub-map or create a new branch to one of the already visited maps. The links contain the coordinate system relations as well as uncertainties transformations. In [6] they propose a 3D SLAM using SIFT similarity matrix, which are based on visual appearance. This allows the recognition of pre-visited places that can be quite repetitive. The paper presented in [7] proposes a method that is able to close a very large loop with a very high number of landmarks on a simulated environment. It uses a hierarchical method to represent the different probabilistic magnitudes associated to several map regions. Also, means to transfer the updates and predictions from the top to the bottom of the tree and vice versa are provided.

This paper presents a real-time SLAM method based on stereo-vision. The basis of this work is presented in [8]. The system is based on a stereo wide-angle camera mounted on a mobile robot. Several visual landmarks are sequentially captured and introduced on an EKF filter in order to model the probabilistic behavior of the system. A measurement model is used for the error on the landmark captures and a motion model is implemented for the dynamic behavior of the robot. As it is well known, one of the major problems on the EKF implementation is the quadratic (n^2) increase of computational cost as a function of the number of landmarks, making it unsuitable for large environments where this number can be potentially high. In order to solve the problem, we present a modified SLAM implementation, which adds an additional processing level, based on SIFT visual landmarks (high level SLAM) obtained from time to time, to the explained SLAM method, based on the Shi and Tomasi operator for the visual landmarks extractions (see [8]) (low level SLAM). The global map is divided into local sub-maps identified by the SIFT visual landmarks, that we will call fingerprint. Then, the robot is locally positioned in a sub-map using the low level SLAM. The sub-map generation technique is currently performed based on the movement of the robot. Then, a fingerprint is taken in case that the robot changes its direction over a threshold. Currently, we are working a sub-map generation technique based on the characteristics of the environment images. So, under particular circumstances (total reference loose, too high number of landmarks, appearance image changing, etc) a new fingerprint should be taken. This process identifies a sub-map as the obtained from the images taken from the current fingerprint to the next one. A matching process between previously captured fingerprints and current one is carried out to detect pre-visited zones. The information extracted from the matched features of the fingerprint is used to update the filter and correct the robot state as well as

Manuscript received March 27, 2007. This work was supported in part by the Spanish Ministry of Science and Technology (MCyT) under Grant TRA2005-08529-C02 (MOVICON Project) and by the Community of Madrid under Grand CM: S-0505/DP1/000176 (RoboCity2030 Project).

All the authors are with the Department of Electronics, University of Alcala, Madrid 28805, Spain (e-mail: DSG68818@telefonica.net, bergasa@depeca.uah.es, barea@depeca.uah.es; elena@depeca.uah.es; mocana@depeca.uah.es; jnuevo@depeca.uah.es).
the whole map covered by the loop.

Our proposal is based on the Shi and Tomasi operator and an own Patch Adaptation method for continuous visual tracking instead of the SIFT method, on the low SLAM level, due to the high computational cost of the last one. We use SIFT from time to time only for loop-closing tasks. This strategy has been supported by Andrew Davison in his recent IEEE PAMI publication [9].

This paper is structured into four main parts. The first one presents the low level SLAM implementation and the second one the high level SLAM. After that, a large set of results is given to show the behavior of our system. A comparison of the low SLAM level using our method and SIFT features has been carried out. The paper finishes with some conclusions and future work.

II. LOW LEVEL SLAM

This level implements all the algorithms and tasks needed to locate and map the robot on its local environment.

A. Extended Kalman Filter application

In order to apply the EKF, a state vector X and its covariance matrix P need to be defined. The purpose of the algorithm is to continuously estimate the position and orientation of the camera, via the linearization of the next state function, $f(X)$, at each time step. Because of the impulse motion model used for the camera movement, which will be explained later, it is needed to add two more variables to the camera state vector X: the linear and angular speed:

$$X_v = (X_{rob} \ q_{rob} \ v_{rob} \ \omega_{rob})^T$$

In equation (1), X_{rob} is the 3D position vector of the camera relative to the global frame, q_{rob} represents the rotation vector, v_{rob} is the linear speed and ω_{rob} is the angular speed. On the other hand, as the whole map has to be included into the filter, all the features global position state vectors Y_i have to be included into the total state vector X. So, the state vector $X=(X_v \ X_i \ Y_i \ \ldots)^T$ and its corresponding covariance matrix P are defined.

B. Motion Model

The first stage to build the motion model is to predict the next state vector and covariance matrix. In this case the object to model is a mobile robot. Our model is based on a more general application (see [8]). It assumes constant speed (both linear and angular) during each time step. There will only be random speed changes, which will lead to the so-called impulse model. In order to be used to the navigation of a mobile robot, the motion model has been adapted applying some restrictions. These restrictions are to reduce the uncertainty on the “y” linear movement direction as well as the uncertainty on rotations around the “x” and “z” axes.

According with this model, to predict the next state of the camera, the function

$$f_v = (X_{rob} + v_{rob} \cdot \Delta t \ q_{rob} \times [\omega \cdot \Delta t] \ v_{rob} \ \omega_{rob})^T,$$

is defined. The term $q[\omega \cdot \Delta t]$ represents the transformation of a 3 components vector into a quaternion. Assuming that the map does not change during the whole process, the absolute feature positions Y_i should be the same from one step to the next one.

C. Measurement Model

Visual measurements are obtained from the “visible” features positions. In our system, we define each individual measurement prediction vector $h_i = (h_{i1} \ h_{i2} \ h_{i3})$ as the corresponding 3D feature position relative to the camera frame. To choose the features to measure, some selection criteria have to be defined. These criteria will be based on the feature “visibility”, i.e. whether its appearance is close enough to the original one (when the feature was initialized). This is based on the relative distance and point of view angle respect to the one at the feature initialization phase (see Fig. 1). The first step is to predict the measurement vector h_i. To look for the actual measurement vector z_i, we have to define a search area on the projection images. This area will be around the projection points of the predicted measurement h_i on both left and right images: $U_l : (u_{l1}, v_{l1}), \ U_r : (u_{r1}, v_{r1})$. To obtain the image projection coordinates, first we apply the simple “pin-hole” model and then it is distorted using the radial and tangential distortion models, which will be detailed later on. To obtain z_i, we need to solve the inverse geometry problem, applying the distortion models as well (see [8]). Respect to the search areas, they will be calculated based on the uncertainty of the feature 3D position, what is called innovation covariance S_i. (see [14]). As we have two different image projections, S_i needs to be transformed into the projection covariance P_{U_l} and P_{U_r}.

$$P_{U_l} = \frac{\partial U_l}{\partial h_i} S_i \frac{\partial U_l}{\partial h_i}^T, \quad P_{U_r} = \frac{\partial U_r}{\partial h_i} S_i \frac{\partial U_r}{\partial h_i}^T$$

These two covariances define both elliptical search regions, which are obtained taking a certain number of standard deviations (usually 3) from the 3D Gaussians. Once the areas, where the current projected feature should lie, are defined, we can look for them. At the initialization phase, the left and right images representing the feature patches are stored. Then, to look for a feature patch, we perform normalized sum-of-squared-difference correlations across the whole search region (see [14]).

D. Distortion Models

To correct the high lens distortion, radial and tangential distortion models are applied. The models definition is described in [11] and it is applied to the projection jacobians.
as well. Taking the left camera, we define, in metric coordinates, the distorted \((u_{LC}, v_{LC})\) and undistorted \((u_{LCN}, v_{LCN})\) projection coordinates. Then, we can relate them as follows, using the direct model:

\[
\begin{align*}
 u_{LC} &= f \cdot u_{LCN} + 2P_{1L}u_{LCN}v_{LCN} + P_{2L}(r^2 + 2u_{LCN}^2) \quad (3)
 \\
 v_{LC} &= f \cdot v_{LCN} + P_{1L}(r^2 + 2v_{LCN}^2) + 2P_{2L}u_{LCN}v_{LCN} \quad (4)
\end{align*}
\]

On the previous equations the following parameters are defined as: \(r^2 = u_{LCN}^2 + v_{LCN}^2\), \(f = 1 + K_{1L}r^2 + K_{2L}r^4\). On this model, we use \(K_{1L}, K_{2L}\) as the radial distortion coefficients and \(P_{1L}, P_{2L}\) as the tangential distortion coefficients. For the inverse model, we apply an iterative procedure.

E. Patch Adaptation

As it was explained before, as the robot moves within the environment, the appearance of the patches changes respect to the original one (at the initialization time). At the same time as the robot moves away from the original state, the difference increases. This leads to an inaccurate matching correlation as well as an increase in unsuccessfully measurements. A method to transform the appearance of the patch is applied to reduce its impact. When the feature is initially captured, the 3D positions of all the pixels within the patch is estimated and stored. A flat plane parallel to the robot is assumed for the 3D patch representation. From now on, each time the corresponding feature is measured and the patch appearance is estimated by predicting the projection of each of the pixels within the patch. An efficient interpolation method is applied to obtain the full patch appearance.

III. High Level SLAM

As it was stated before, in large environments, as the number of landmarks grows the covariance matrix \(P\) size increases until the processing time exceeds real time constraints. To avoid this, only a local visible window of landmarks is introduced into the EKF. This, as we will show on the results, allows an almost constant processing time with number of landmarks increasing (see Fig. 8).

On the other hand, we need to keep the global map error as low as possible. Therefore we need to assure the whole map consistency as well. As we only keep local uncertainty information on the visible features, it is necessary to add a higher level process that preserves the global map uncertainty history along the robot’s path, that is the cumulative covariance matrix \(P_G(k) = P_G(k-1) + P_{XG}(k)\). To do that we divide the global map into local sub-maps identified by the SIFT fingerprints \(SF = \{s_f | f \in 0...L\}\) each of them composed by a set of SIFT features \(YE^f \in \{y_{e}^f | m \in 0...M\}\). The process consists in periodically take fingerprints along the path covered by the robot (see Fig. 2). Each time a new fingerprint is to be taken it is evaluated comparing it to the previously acquired fingerprints within an uncertainty search region. This region is obtained from \(P_G\) because it keeps the global uncertainty information of the whole map. In case that the result of the evaluation gives that the robot is in a previously visited place, a closed loop situation will be identified. This situation is explained later on.

The philosophy of the EKF sub-maps was previously presented in [13]. One of the main differences between their approach and ours is the local map management. In [13], the EKF process is carried out taking into account all landmarks within the local maps. We take into account only the visible ones. This allows us to keep always a reduced number of landmarks being processed within the EKF. On the other hand, in [13], a global map is tried to be built joining all local maps. Then, a process is carried out to identify all duplicated landmarks, closing all possible loops inside. Instead, we continuously keep the accumulated global uncertainty, allowing the global map correction at any time as soon as a closed loop situation is detected.

A. SIFT Fingerprints

As we explained before, the way to identify a place is based on the so-called SIFT fingerprint. These fingerprints are composed by a number of SIFT landmarks distributed across the reference image. SIFT features were introduced by D. Lowe in [10]. SIFT features are invariant to image scaling and rotation, and partially invariant to change in illumination and 3D camera viewpoint. In addition, the features are highly distinctive, which allows a single feature to be correctly matched with high probability. This is achieved by the association of a 128 length descriptor to each of the features, which will identify uniquely all of them. The overall SIFT features extraction is described as follows:

1. Scale-space extreme detection: The first stage of computation searches over all scales and image locations. It is implemented by using a difference-of-Gaussian function to identify potential interest points (local maxima and minima).

2. Keypoint localization: At each candidate location, a detailed model is used to determine the feature location and scale.
3. Orientation assignment: One or more orientations are assigned to each keypoint location based on local image gradient directions. Relating the future operations to these directions the invariance to orientation is achieved.

4. Keypoint descriptor: The local image gradients are measured at the selected scale in the region around each keypoint. This information is transformed into a representation that will provide an identification of the feature.

In our global process we will store these feature descriptors δ_i within the global database, using them for the fingerprints matching process. The left image coordinates and the $3D$ position are also stored $Y_i' = (u_i, v_i, X, Y, Z, \delta_i)$.

B. Matching Process

One of the main issues on SLAM in large environments is the loop-closing problem. The first issue to solve is the recognition of previously visited places, as it was stated before. Once a new fingerprint is identified it is evaluated, that is, it is compared against all stored fingerprints within the uncertainty area. This comparison is carried out through a matching process which takes into account, for each pair of fingerprints (s_f, s_f'), both the number of recognized SIFT fingerprints and their relative positions within the images to compare. The overall process is as follows:

1. Computation of the euclidean distance between all detected SIFT fingerprints on both images, and selection of those close enough.

2. Lines connecting each pair of matched fingerprints are calculated. The corresponding lengths L_n and slopes S_n are computed as well (see Fig. 7 (b)).

3. Outlayer features are excluded from the computation by the use of the RANSAC method.

3. The global fingerprint matching probability is computed as a weighted function of 2 parameters: Number of matched features and Inliers/Outliers relation (see (5)).

$$P_{fp, \text{match}} = m_1 \cdot \text{num}_\text{matches} + m_2 \cdot (n_1 / n_o) \quad (5)$$

Once the loop-closing situation has been detected, the whole map must be corrected according to the old place recognized. The first step is then, to update the current robot state $\left(X_{rob, \text{new}}, q_{rob, \text{new}}, v_{rob, \text{new}}, \omega_{rob, \text{new}} \right)$ with the detected pre-visited place. To do that we use the epipolar geometry applied to the matched SIFT features in the same way as in the low level SLAM stage. This is achieved thanks to the stored fingerprint states $X_{fp, \text{new}}$, which represent the robot states at the time of the fingerprint creation.

After that, the rest of the map, including feature positions Y_i and fingerprint states $X_{fp, \text{new}}$, along the loop must be updated accordingly. However, we must assure that the resultant map is consistent. The idea behind is that the global uncertainty P_o will always grow as long as the robot moves on the environment. That means: the error in self-locating will increase until the robot revisits an old place that helps to reduce its own uncertainty. In terms of map construction, we can conclude that the oldest map features will have less associated uncertainty and will have to be corrected in a lower degree. On the opposite side, a higher degree of correction will be applied to more recent features. This degree of correction will be modulated as a function of the historic accumulated uncertainty along the whole loop: P_i (see Fig. 3). On this figure we can also observe the location of the fingerprints right after each of the corners on the path.

On equations (6), (7) and (8) we show the 3 consecutive steps applied to the position of a single feature in order to calculate its estimated new corrected value. $T(P_{G})$ represents the trace of the global covariance of fingerprint associated to the feature i. D_R is the 3 components rotation expression of the robot rotation matrix R_{rob}. Finally, Rot represents the transformation of the 3 components vector to the rotation matrix expression. The attributes $init$ and fin refer to the situation before and after the map correction.

$$Y_i = R^{-1}_{FP}(Y_{init} - X_{old}) \quad (6)$$
$$Y_i' = Y_i \cdot Rot \left[T(P_{G}) \frac{T(P_{G})}{T(P_{G})} \right] + \left[1 - T(P_{G}) \frac{T(P_{G})}{T(P_{G})} \right] \quad (7)$$
$$Y_{fin} = Y_i' \frac{T(P_{G})}{T(P_{G})} X_{fin} + \left[1 - T(P_{G}) \frac{T(P_{G})}{T(P_{G})} \right] \frac{T(P_{G})}{T(P_{G})} X_{init} \quad (8)$$

Once the loop is closed, P_i takes the value of the associated old fingerprint identified. Thus, we update the global uncertainty to the new situation. In addition, old visited features will become visible again, and can be incorporated to the low level EKF process.

IV. RESULTS

In order to test the behaviour of our system, a test video sequence has been used. The cameras used were the Unibrain Fire-i IEEE1394 modules with additional wide-angle lens, which provide a field of view of around 100º horizontal and vertical. Both cameras are synchronized at the time of commanding the start of transmission. The calibration is performed offline using a chessboard panel using the method referenced in [11]. The test video sequence was taken by moving the robot along the upper floor of our Polytechnic School building. The complete path, from the start point to the loop-closing place, has a perimeter of 283.25 m (see Fig. 4). We have implemented the low level SLAM using two techniques: our proposal and the SIFT method introduced by D. Lowe [10], in order to compare its performance in a large environment. Fig. 5 depicts the obtained results based on the low level SLAM. Both ours and SIFT results are showed together with the ground truth data. From these results we observe two main deviation points on each implementation. The first deviation is accused with the SIFT method on the first curve of the path, while using our implementation, the robot tend to deviate on the third curve. If we represent the cumulative mean error $e_i = \frac{1}{n_{visited}} \sum_{i=0}^{n_{visited}} \left| X_{i} - X_{ref} \right|$ on Fig. 6, we appreciate that it appears to be higher on SIFT implementation.
The reason is that the first deviation causes a cumulative drift over the rest of the path. The fact that the cumulative error for SIFT was higher than for our method is particular for our environment but it is not applied in general for other environments. Respecting the high level SLAM Fig. 7 depicts the representation of the map estimated, including all landmarks and fingerprints. The sequence represents the map right before and after the loop-closing situation. As it is shown, the map keeps the consistency also after its correction. After that situation, the system keeps the consistency re-introducing the old visible landmarks on the low level EKF and still detecting old fingerprints. Respect to the first one, we can see the main cause of the higher processing time for SIFT implementation, which is due to the increase of measurements and feature initialization phases computational costs. Even though we restricted the keypoints search to the minimum needed area, the successive Gaussian blurring phases contribute to increase the processing time. This is particularly evident for the case of the feature initialization phase, where the search area is extended along the whole epipolar line. Regarding the high level SLAM, as it is shown, the time dedicated to fingerprint matching process as well as the correction of the map at the time of loop closing, having 1630 landmarks, is significantly higher than real time. It has to be taken into account that both tasks do not belong to the continuous self-locating process that is carried out by the low level SLAM. That means that there is no need to complete them within a single frame time slot. So, we can obtain a positive fingerprint matching result a few frames after it was really detected. Then, we can go back and start loop-closing task including also the last processed frames. This implies that both of these tasks can be computed in parallel, keeping them outside the real time computation.
TABLE I
PROCESSING TIMES

<table>
<thead>
<tr>
<th>Low level SLAM processing times</th>
<th>High level SLAM processing times</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implementation</td>
<td>Our method</td>
</tr>
<tr>
<td>Number of features</td>
<td>5</td>
</tr>
<tr>
<td>Number of features</td>
<td>1630</td>
</tr>
<tr>
<td>Filter step</td>
<td>Time</td>
</tr>
<tr>
<td>Measurements</td>
<td>3 ms</td>
</tr>
<tr>
<td>Fingerprints matches</td>
<td>630 ms</td>
</tr>
<tr>
<td>Loop closing</td>
<td>5 ms</td>
</tr>
<tr>
<td>(Including graphic</td>
<td>6000 ms</td>
</tr>
<tr>
<td>representation time)</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 7. Map representation of a loop-closing situation. The low level landmarks are represented in yellow colour, while the visible and correctly measured are represented in red colour. The green numbers show the fingerprint locations. The robot position is represented on the centre of the big blue cross. a) Representation right before the map correction. b) Fingerprint SIFT features matching. c) Representation right after the map correction.

Fig. 8. Processing times for low level SIFT (in blue colour) and our method in red colour. Real time limit is represented as a constant 33 ms black line.

V. CONCLUSION

We have presented a two hierarchical SLAM levels method that allows self-locating a robot by measuring the 3D positions of different natural landmarks. It has been demonstrated that using SIFT landmarks for continuous tracking on the low level SLAM is less suited that using our method, mainly due to the high processing time of the first one. Respect to the high level SLAM it has proved that the SIFT fingerprints method solves the loop-closing problem keeping the real time behavior constant along the path. This conclusion has been supported by Andrew Davison in [9]. Some improvements can be done in the philosophy of taking fingerprints.

REFERENCES