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Abstract— In this paper we present an effective sys-
tem for detecting vehicles in front of a camera-assisted
vehicle (preceding vehicles traveling in the same di-
rection and oncoming vehicles traveling in the oppo-
site direction) during night time driving conditions
in order to automatically change vehicle head lights
between low beams and high beams avoiding glares
for the drivers. Accordingly, high beams output will
be selected when no other traffic is present and will be
turned on low beams when other vehicles are detected.
Our system uses a B&W micro-camera mounted in the
windshield area and looking at forward of the vehicle.
Digital image processing techniques are applied to
analyze light sources and to detect vehicles in the
images. The algorithm is efficient and able to run in
real-time. Some experimental results and conclusions
are presented.

I. INTRODUCTION

Modern automotive vehicles include a variety of differ-
ent lamps to provide illumination under different oper-
ating conditions. Headlamps are typically controlled to
alternately generate low beams and high beams. Low
beams provide less illumination and are used at night
to illuminate the forward path when other vehicles are
present. High beams provide significantly more light and
are use to illuminate the vehicle’s forward path when
other vehicles are not present. Daylight running lights
have also begun to experience widespread acceptance.

There are various countries with regulations to con-
trol the amount of glare experienced by drivers due
to preceding vehicles (other vehicles traveling in the
same direction) and incoming vehicles (vehicles traveling
in the opposite direction). These laws obligate to the
vehicle manufacturers to build vehicles that comply with
these regulations. For example, the Department of Trans-
portation (DOT) in USA regulates the light emissions
of vehicle high beam headlamps. In accordance with
the DOT regulation limits, vehicle high beam headlamp
emissions provide an intensity of 40,000 cd at 0°, 10,000
cd at 3°, 3250 cd at 6°, 1500 cd at 9° and 750 cd at 12°.
A scheme for understanding this problem is illustrated

in Figure 1 [1]. In order to avoid an illuminance of 0.1
foot-candles (fc) incident on another vehicle at these
angles, the vehicle high beams head-lamps should be
dimmed within 700 feet (213 m) of another vehicle at 0°,
within 350 feet (107 m) of another vehicle at a horizontal
position of 3° and 200 feet (61 m) of another vehicle at
a horizontal position of 6°.

Fig. 1.
problem

Scheme of the dimming vehicle high beam headlamps

In order to prevent drivers of other vehicles from
being subjected to excessive glare levels an automatic
control of the vehicle headlamps can be done. For a
preceding vehicle, the distance by which the controlled
vehicle’s headlamps must be dimmed, can be less that
for an oncoming vehicle since glare form behind is usu-
ally less disruptive than oncoming glare. In the last
few years many researchers have studied the effects of
oncoming headlight glare [2]. An automatic headlamp
dimmer system must sense both the head lights of the



oncoming vehicles as well as the tail lights of preceding
vehicles. Then, it has to distinguish between nuisance
light sources, such as reflections of road signs or road
reflectors, streetlights, etc, from light sources that require
headlight control to avoid an undesirable performance.

Several automatic headlamp dimmer control systems
have been proposed in the literature but at the moment
none of them are commercialized. Currently the two more
important systems are:

« Vehicle lamp control developed by Gentex Corpora-
tion. It is a system and method of automatically
controlling vehicle headlamps including an image
sensor and a controller to generate headlamp control
signals [3].

o Adaptive Headlight Control (AHC) developed by
Mobileye. To perform AHC Mobileye uses an im-
age grabber and detailed analysis of light sources
appearing in the image. According to its Web page
Mobileye’s AHC will be in serial development for a
2008 production for Siemens VDO [4].

Under night time driving conditions the more confident
visual information for detecting vehicles are their head
lights and tail lights. Some researchers have been working
on the development of systems for nighttime vehicle
detection and they are based mainly in the detection of
head lights and tail lights [5].

Our work proposes an effective automatic control of
the vehicle headlamps based on the detection of head
lights and tail lights under night time road conditions.
The main stages of the algorithm are explained in section
II. Experimental results can be found in section III.
Conclusions and future works are presented in section
IR

II. ALGORITHM

Our method comprises the following steps: The input
images are obtained from the vision system using a
B&W camera which is mounted behind the windscreen
inside the camera-assisted car. These input frames show
nighttime road enviroment in front of the car. As can be
seen in Figure 2, typical nighttime road conditions are
characterized by a dark background and bright objects
corresponding to head lights, tail lights and nuisance
light sources (reflections of road signs or road reflectors,
streetlights, etc). Firstly, an adaptive thresholding must
be applied to detect bright blobs in the image, which are
corresponded with vehicles’ lights. Then, the segmented
blobs are clustered, based on geometric characteristics
of the blobs, in order to distinguish vehicles of other
nuisance light sources. Each cluster is tracked in a se-
quence, using a Kalman Filter, obtaining a multi-frame
clustering. After that, tracked objects are classified in
signs (main nuisance light source due to the reflections
of the own vehicle’s light over the road traffic signs) or
vehicles, using a Support Vector Machine (SVM). Finally,
a decision between the low/high beams turned on is
taken.

Fig. 2.

Typical nighttime road enviroment

A. Bright Objects Segmentation

In this step of the algorithm, B&W images are thresh-
olded using an adaptive threshold in order to detect
image bright objects and to measure some geometric
parameters over them. Some important aspects must be
considered for choosing a correct threshold value such as:
road illumination conditions, vehicle’s lights appearance,
nuisance light sources and camera parameters.

Figure 3 depicts 3D intensity shape of a standard
vehicle’s head light. It has a Gaussian shape where the
centre pixels belongs to the light source with values
above 250. The edge pixels belong to the background
with values below 50. As it can be seen, there is a high
range in order to fix a threshold for light detection.
Normally, nuisance light sources use to appear in the
image with values below 200 (see Figure 4(b)). The
problem is that there are some reflections of road signs
that present similar intensity values as the vehicle’s light,
as we depitct in Figure 4(a). In these cases it is imposible
to differentiate them using a thresholding method.
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Fig. 3.

Shape of vehicle’s head light

Another problem is that head and tail lights have
different intensity values in the B&W image Actually,
intensity for tail lights is lower than for head lights and
sometimes below most of the nuisance artifacts in the
image. This is the reason because tail lights detection
is more difficult than head ones. Figure 5(b) shows how
bright objects are extracted from the original image. The
green lines that appear in Figure 5(b) define the area of



) Sign light vs Vehi-
Cle s head light

(b) Nuisance light vs
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Fig. 4. Grey scale difference between road sign, nuisance light, tail
lights and head lights

analysis in the image.

) Thresholded image

a) Original image

Fig. 5. Bright objects segmentation

B. Clustering Process

The goal of this process is to cluster the detected blobs
in the previous step. As long as a cluster in a frame is
matched with the same cluster in the next frame, this
is considered as an object, and must be evaluated to
determine if this object is considered a vehicle or not.

The clustering and matching process starts by finding
the closest object of the previous frame to each blob in
the current frame. If the closest object exists, the blob
is associated to that object. In the case that the closest
object had already an associated blob, proximity between
the two blobs is evaluated, and if it is suitable that both
blobs belong to the same vehicle, the blob is added to the
object’s blobs list. This may happen with the two lights
of a car as it approaches. Then objects are tracked using
a Kalman Filter [6].

Each object has a live time. This time counts the
number of frames in which it has been matched. Objects
must be matched during a minimum number of frames
in order to be considered as valid.

An important issue of the clustering process is to
classify objects between preceding or oncoming vehicles.
If ever an object is detected to be at a distance twice
farther than any other distance at what it has been
before, the object is classified as preceding, which means
that the object is moving at the same direction of the
camera assisted car. For the rest of cases the object is
classified as oncoming, which means that the object is
moving at the opposite direction.

C. Distance Estimation

In order to estimate the distance between the camera
assisted car and the detected vehicles using monocular
vision, a perspective camera model is applied [7], as it
can be seen in Figure 6. Origin of the vehicle coordinate

system is located at the central point of the camera lens.
The Xy and Yy coordinates of the vehicle coordinate
system are parallel to the image plane and the Zy axis
is perpendicular to the plane formed by the Xy and
Yy axes. A vehicle at a look-ahead distance Z from
the camera will be projected into the image plane at
a vertical and horizontal coordinates (u,v) respectively.
Vertical and horizontal mapping models can be carried
out but in this application the most important is the
vertical one. The vertical model considers that the road
is flat and it uses the following parameters:
o I: Image
e Z: look-ahead distance for planar ground (m)
o hCAM: elevation of the camera above the ground
(m)
o Lightgyrraury: elevation of the vehicle’s light
above the ground (m)
e Ocap: camera pitch angle relative to vehicle pitch
axis (rad)
e 0z: incident angle of the precedent vehicle’s light in
the camera relative to vehicle pitch axis (rad)
« v: vertical image coordinate (pixels)
e HEIGHT: vertical size of the CCD (pixels)
e F,: vertical focal length (pixels)

Fig. 6. Vertical road and mapping geometry

According to Figure 6, the vertical mapping geometry
is mainly determined by the camera elevation ho 4 and
vehicle’s lights elevation Lightgpraary above the local
ground plane as well as the pitch angle (canr). The
longitudinal axis of the vehicle is assumed to be always
tangential to the road at the vehicle centre of gravity
(cg).

To each image scan line at v, there corresponds a pitch
angle relative to the local tangential plane of:

0z = O0can + atan <;> (1)

From this, the planar look-ahead distance correspond-
ing to v, is obtained as:

hcam — Lightugrgury @)
tan (07)
And finally, after applying a coordinate change, the

equation for computing the look-ahead distance Z be-
comes:

7 =

hcam — Lightggraary 3)

7 =
tan (QCAM + atan (%))



Even though this distance estimation is reasonably
good in almost all the scenarios, there are situations as
uneven roads where the horizontal mapping geometry
must be considered, as we depict in Figure 7. For this
purpose a correction of the distance Z is proposed in
which the projection in the horizontal coordinate of the
image (u) is introduced:

Z-(2u—WIDTH)
Fy

(4)

Zaux =

where:

 u: horizontal image coordinate (pixels)

e WIDTH: horizontal size of the CCD (pixels)

e F,: horizontal focal length (pixels)

And finally the real distance (Zg) can be obtained
from the last two distances applying the following equa-

tion:
Zp = \/ ZEXUX + Z? (5)

Fig. 7. Horizontal road and mapping geometry correction

The parameter Lightypraury is defined as the eleva-
tion of the vehicle’s light (head lights or tail lights) above
the road. Since we are working with only one camera
at night and estimating 3D distances very far, it is not
possible to calculate this from the image analysis. Then,
this parameter is computed off-line in a previous setup.
As there are high differences between the elevation of
the head and tail lights in vehicles, two different values
were assigned to this parameter as a function of the kind
of light. These values represent the average elevation of
analyzed vehicles in the setup process. Besides, classifi-
cation between preceding or oncoming vehicles is carried
out in the clustering stage of the algorithm. Depending
on this classification, one of the next two different values
will be used:

o Head lights: LightHE[GHTYZO.G m

o Tail lightSZ LigthE[GHTy:O.S m

However, this distance is only an approximation, since
some sources of error can affect this estimated distance,
such as: elevation of the vehicle’s light, road unevenness,
object’s centroid, etc.

D. Black Hat Transformation

The top-hat transformation is a powerful operator
which permits the detection of contrasted objects on non-
uniform background [8]. There are two different types
of top-hat transformations: white hat and black hat.
The white hat transformation is defined as the residue
between the original image and its opening. The black
hat transformation is defined as the residue between the
closing and the original image. The operations white
and black hat transformations are defined as follows
respectively:

WHT (Xa Y) =
BHT (X> y) =

(f—=foB) (6)
(feB—f) (7)

In the equations 6 and 7 f(x,y) is a grey scale image
and B is the structuring element. Both operators, white
and black hat can be used in order to modify the contrast
of the image or enhancing contrast in some regions of the
image. Normally, in grey scale images, the local contrast
is ruled by two kinds of features: bright and dark features.
The white hat image contains local peaks of the intensity
and the black hat image contains local valleys of the
intensity. As we can stand out the effect of the halo
(local valleys of intensity) of head lights or tail lights, the
black hat transformation was chosen for this purpose. In
fact, the halo is one of the most important parameters to
distinguish between road signs and vehicles. This effect
is more important for head lights since the intensity of
these lights is higher than for tail lights. In Figure 8, the
halo effect for a vehicle can be seen.

a) Original image ) Black hat image

Fig. 8. Halo effect for vehicles

As can be seen in Figure 9, this effect is not enough
significant for road signs.

) Black hat image

a) Original image

Fig. 9. Halo effect for road signs

Once the transformation is done, an indicative param-
eter of the lights’ halo called hat is computed as the
average intensity of a defined rectangle including the
object.



E. Classification Using Support Vector Machines

One of the most important problems of the system is
to distinguish between vehicle’s lights and reflections of
traffic signs (main nuisance light source). In this step,
the detected bright objects are classified as signs or
vehicles depending on some parameters using Support
Vector Machines (SVMs)[9]. Two aspects are essential in
the deployment of SVMs classifiers: the training strategy
and the classifier structure. As SVMs are supervised
learning methods used for classification, it is necessary
to obtain a model under supervised training (¢raining
mode), and once the model is obtained, it can be used in
real applications (test mode).

An input vector was defined for the classifier. This
vector is composed of different parameters which are
computed per object and define the state vector for the
SVM. The parameters of the vector are:

o Area in pixels

o Coordinate v of the object’s centroid

o Hat Value

o Rectangularity

o Aspect Ratio

o Length of the object’s contour

o Circularity

The output of the SVM d, is simply the signed distance
of the test instance from the separating hyperplane. This
output indicates wether the analyzed object corresponds
to a vehicle or not and can be used as a threshold for
separating nuisance light sources and vehicles.

The classification algorithm uses this result and clas-
sifies the objects as signs or vehicles depending on its
output distance from the separating hyperplane. The
classification between vehicles and nuisance lights it is
more difficult at far distances. This problem can be
seen in Figure 10 where one vehicle located close to the
horizon line in the image (at a distance of approximately
200 m) is surrounded by several signs and the system
classified each of the objects correctly (headlights in
green and road signs in blue).

Fig. 10. Classification of objects at far distances

III. EXPERIMENTAL RESULTS

The system was implemented on a Pentium IV 3 Ghz
platform and the size of the recorded image sequences
is 720 pixels by 480 pixels per frame. The computation
time spent on processing one input frame depends on the
complexity of the road scene (mainly in the number of
blobs and objects to be processed). The frame rate of the

system is in average close to 20 frames per second which
is enough for real time demands. Exhaustive experimen-
tal tests (more than 7 hours of video sequences) under
different night time roadscenes were done for analyzing
the performance of the system.

A. Distance Estimation

One sequence was tested in which a vehicle was placed
at a distance of 200 m in front of the camera-assisted car.
Then, the vehicle approached from a distance of 200 m
to a distance of 0 m with a constant speed of 30 Km/h.
The purpose of the sequence was to detect and track the
vehicle’s head lights so as to evaluate the accuracy of the
distance estimation. Figure 11 depicts a sample of the
scenario for the distance estimation analysis. The results
of this analysis can be seen in Figure 12.

Fig. 11.

Detection of an oncoming vehicle
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Fig. 12. Distance estimation 200 - 0 m. Head lights

B. Analysis of the Classifier

The SVM was trained using a representative database
for learning and testing. For creating the training and
test sets, the ratio between positive (vehicles) and nega-
tive (mainly reflections of traffic signs) must be set to an
appropriate value in order not to produce misslearning
or a high percentage of false positive detections (signs
classified as vehicles) during on-line tests [9]. The quality
of the classifier is measured by the probability of de-
tection Pp(objects that are classified correctly) and the
probability of false alarm Pg 4 (vehicles that are classified



as signs and viceversa). These two indicators are shown
together in Figure 13.

Receiver Operating Characteristic
1 T T
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Fig. 13. Receiver operating characteristic

C. Head Lights Detection

The system can detect head lights for first time at
distances between 300 m - 500 m, depending on road
conditions. In some tests that were done some vehicles
with high beams where detected even at 700 m, which
is a very good performance, since it is very difficult to
detect and classify objects at these distances.

All the head lights are detected, but the problem is
when these head lights are detected. Normally, in good
road conditions, the head lights are detected immediately
but if road conditions change (due to road unevenness at
far distances) some head lights can be detected later since
the classifier depends on the vertical image coordinate.
Figure 14 depicts a sample in which two objects are
detected and classified correctly, one is a vehicle (at a
distance of approximately 70 m) and the other is a sign.

Fig. 14. Head lights detection at 70 m

D. Tuil Lights Detection

Tail lights are more difficult to be detected than head
lights. This is because luminance of tail lights is lower
than luminance of head lights. Besides, variety and di-
versity of tail lights is so huge that makes detection more
difficult. This means that detection of tail lights depends
too much on the vehicle type. In average the system can
detect tail lights for first time in a range between 50 m -

80 m. Figure 15 depicts a sample in which tail lights of
one vehicle were detected at a distance of 35 m.

Fig. 15. Tail lights detection at 35 m

IV. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a night time detection
computer system for driving assistance. On the one
hand, the system performance is very good for head
lights (distance of detection 300 m - 500 m) but on the
other hand, the performance for tail lights (distance of
detection 50 m - 80 m) must be increased.

The results are encouraging, and we plan to include
several improvements to the current implementation.
In the near future, a parameter indicative of the road
vertical curvature will be included in the camera model
in order to estimate this curvature at far distances.
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