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Abstract-In this paper, a modeling of the hue and saturation
dispersions of classes projected in the HS plane is presented. The
relevance of the proposed modeling is its application in general
clustering processes in the HS domain. In a previous work about
class separation in the HS plane for segmentation improvement,
it was necessary to calculate the hue and saturation variances of
the classes for their different locations in the HS plane. Classes
may be composed by a high number of samples and variances are
distinct for the different locations within the HS plane, so this
process needs a high processing calculus time. In the current
paper, the hue and saturation dispersions are modeled (requiring
a lower processing time) and are applied to that segmentation
process. The authors propose to use the geometric-analytical
relationships between the HSI space and the YC1 C2 tristimulus.
These relationships allow to estimate the dispersions of the classes
projected in the HS plane from their dispersions in the C1C2
linear chromatic plane. The results obtained in different practical
applications show the validity of the proposal and a remarkable
improvement in the processing time.

I. INTRODUCTION

In the image processing area, applications that perform
object clustering and segmentation processes are usually based
on pixel classification. This pixel classification often uses a
distance metric in a sub-space formed by components from one
or several color spaces as discriminant function [1-4].
As is known, the calculation or estimation of the class

covariance matrixes plays a fundamental role in the
classification process operation and performance, because
these variances determine the class reliability. Some previous
works calculate the mean vectors and the covariance matrix to
characterize the classes, (e.g. object and background), in an
off-line process, keeping these values constant during the
classification process, independently of the kind of classifier
used, for example, using a distance metric as the Mahalanobis
one [3] (in the Cb Cr plane) or Bayesian classifiers [4].
However, in other works, such as "Improvement of the

Segmentation in HS Sub-space by means of a Linear
Transformation in RGB Space" [5], previously presented by
the authors, the interest and need of the on-line calculation of
the object and background class variances in HS components
are shown. In the proposal presented in [5], an iterative process

is executed. This process requires the calculation of the hue
and saturation dispersions of the classes in the HS plane for
each iteration. To avoid the variances calculation in each
iteration, the authors propose in the current work a modeling
that estimates the hue and saturation deviations in order to
reduce the processing time. The proposed model is based on
the existing mathematical relationships between the HSI color
space [6] and the YC1C2space [7-9].
An estimation of the hue and saturation deviation is

performed in [10] for the Smith's HSI transformation [1 1]. In
[10], the estimation provides a reliability degree of the H and S
values which is used to improve the color classification
processes.
An analysis of the additive Gaussian noise propagation from

RGB space to normalized rg, to the opponent color space (Ol,
02) and to a particular hue component (0) is carried out in [12].
In this last work, approximations of the r, g, Ol, °2 and 0
deviations from the values of R, G and B and their respective
deviations are obtained. These approximations are used to
obtain several variable kernel density estimations to construct
robust histograms.

In the author's previous paper [5], equations to directly
convert between HSI and YC1 C2 spaces are demonstrated.
Taking C1 C2 plane as a reference, a geometric-analytical
formulation by means of the class uncertainty ellipse in this
plane is performed to estimate the hue deviation. Besides, as
shown in [5], the saturation component is a linear function of
C1 and C2 components. Now, we take into account this
characteristic to obtain a mathematical expression to estimate
the class saturation variance.

This paper has been organized as follows: section II
describes the proposed algorithm, starting from an introduction
about the existing relationships between the YC1 C2 and HSI
spaces, and, afterwards, the proposed modeling of the hue and
saturation dispersion. Section III presents the method to apply
this modeling to the technique of improvement of the
segmentation in the HS sub-space by means of a linear
transformation described in [5]. Section IV presents the
experimental results, and section V the conclusions.
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II. PROPOSED METHOD

The processing time needed for the calculation of the hue
and saturation variances in each location in the HS plane may
not fulfill the temporal restrictions required by some real-time
application. Therefore, the interest to obtain a mathematical
model that requires lower processing time to estimate the hue
and saturation variance is justified. This model is particularly
important when the class is formed by a high number of
samples.

In this section, the modeling of the dispersions of a class in
the HS plane is presented. This modeling uses the
mathematical relationship between the YC1 C2 and HSI spaces.

A. Relationship between YC1C2 andHSI spaces
The correspondence between the YC1 C2 and HSI color

spaces allows to obtain the modeling of the hue and saturation
dispersion, because the linearity property of the YC1C2 space
can be used to diminish the non-linearity and discontinuity
problems of the HSI space. In the author's previous work [5]
the relationship between both spaces is demonstrated:

H [ a~C2 >0
2H{- a, otherwise'

S

C=cos-t jC

Cy+ OC2O<H<27/3

3y,
3y

B. Class Dispersion Modeling
In this section, a modeling to describe the behavior of the

hue and saturation dispersions of the classes in the HS plane
when translated in the C1C2 plane is presented. The proposed
modeling obtains the value of the hue and saturation deviations
as a function of the class means in the C1C2 plane (I1'c and
1tC2)-

1. Modeling ofthe Hue Dispersion
Given that the angle of a vector c in the C1 C2 plane and the

angle of a vector h in the HS plane are the same (superposed
vectors), the variations of the angular dispersion in the C1C2
plane correspond with the variation of the hue dispersion in the
HS plane [5]. Therefore, if the uncertainty ellipse of the class
in the C1C2 plane is obtained, the angular deviation can be
approximated by half of the angle between the two straight
lines tangent to the uncertainty ellipse (one on each side of ,uH)
that also pass through the origin of the plane. For a class Q
formed by N samples (k-1,2,..,N), each sample k in the C1C2
plane is represented by a vector Ck =[Clk C2k ]T.
Statistically, the set of N samples is characterized by its mean
vector c= [piCt IC2 ]T and a covariance matrix E. The
parameters of the uncertainty ellipse of the class Q (the so-
called invariants of the dispersion of hue) are obtained from E
by:

w =tan-'(C2u/Clu), U =--, 1=A (4)
(2)

I=Y (3)

In [5], a set of values of a class separation measurement
index is obtained applying several translations to the classes in
the C1 C2 plane. As will be shown in the following sections, the
class translations are performed by adding a color vector (ir) to
the classes in the RGB space, or a translation vector (i,) to the
classes in the C1 C2 plane. It can be demonstrated that any
translation of a class in the C1 C2 plane always produces a
modification of the hue dispersion in the HS plane. The hue
dispersion value will remain constant if and only if the class
geometry in the C1 C2 plane is circular and the translations are
angular, (not radial or a combination of radial and angular).
Furthermore, the saturation dispersion is also modified by
effect of the variation of the hue dispersion, but a purely
angular translation also keeps constant the saturation
dispersion, independently of the class geometric form. In
general, the geometric form of the classes is not predetermined
and the translations applied to a particular class may be both
radial and angular.

The objective of this work is to obtain a modeling of the
dispersions for any class geometric form and any kind of
translation within the HS plane.

where w is the angle of the major axis with respect to the
horizontal axis (C1 axis), u and I are the semimajor and
semiminor axes of the ellipse, respectively. C1u and C2 are the
components of the eigenvector corresponding to the highest
eigenvalue (Au) of E, and Al is the lowest one.
A geometric-analytical formulation to relate the standard

deviation of the hue (oH) of a class in the HS plane is
performed with the invariants of hue (4) for the different
locations of the class in the C1 C2 plane. Starting from the
generic equation of an ellipse in the C1 C2 plane, it is possible
to estimate the oH. The ellipse equation as a function of C1 and
C2, g( C1, C2), is given by:

aC2 +dCi+bCIC2 +cC2 +eC2 +f=1 (5)

where a, b and c are translation invariant coefficients, because
they are only a function of (4), and are given by:

a= (cos2 aIU2 +sin2 W112), b= 2sinwcosW(1 U2 1/12),
c = (sin2 wO/U2 +coS2 L0/l2 ). (6)

Here, d, e and f are translation dependent coefficients, because
they are a function of the class means: 1tci and 1tC2

d =-(2atcl +[bl-tc2), e=-(2cpiC2+bpic1),
f=a,_2H+-b,cltuc2H+c,C12 (7)
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The estimation of oH as a function of the parameters 1tc and
1tC2, starts by choosing one of the tangency points between the
two tangent lines and the ellipse, i.e., Pt = [C1t C2t ]. Taking
the partial derivative of the ellipse equation (5), given by:

g(Cl 2) 2aC-+d+bC2 0,9C 2) 2cC2 +C+bC) (8)

and knowing that the tangent lines pass through the origin of
the coordinates plane, using Pt, the following expression is
obtained:

C2t
Cit

2cC2+e+bCi
2aC-+d+bC2

The tangency point Pt belongs to the ellipse, therefore, C1, can
be obtained from (5) and (9) by:

cft, =kaB+ /ka (B2 -4AC). j {i; [ (10)

where A=E2-ac, B=ebl2c2-d1c, C=E2+(1-)/ c, ka=(l-C/E2),
kb =(B2/2E2-2A) and E=- /2c. Then, using (5) and (10), the
C2tIs are obtained by means of:

(C2tl 1,C2t12,C2t21,C2t22) E±DCit+ AC12j ±B C=t±+C (11)

where D=- b/2 c. Four tangency points can be obtained from the
last equation (11): Ptj=(C1tj, C2GM,), Pt2=(C1tl, C2t12), Pt3=(CiO2,
C2t2( ) and Pt4=(Ca, C2m22). The choice of a particular point
depends on the location of the ellipse within the plane, because
all of them may be valid. If Htl, Ht2, Ht3 and Ht4 are the angles
produced by these tangency points respectively, the hue
deviation is approximated by:

C~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

0H = I(max(d(CHt,HffH))-min(d(/-tH,Htn)));n =1,2,3,4 (12)

where d(JH,Ht is the known directed distance, created to
avoid the problems of the cyclic property of the Hue seen in
[9]. Here, the directed distance between the angle of each
tangency point and the angular mean is obtained.

Fig. 1 depicts the correspondence of a class in both domains,
HS and C1 C2. The mean vector c of the class in the C1 C2 plane
(QC1C2) and its corresponding mean vector h of the class in the
HS plane (QHS) are shown. The calculation of the angular or
hue deviation (qH), by means of the uncertainty ellipse of the
class in the C1 C2 plane can also be observed.

2. Modeling ofthe Saturation Dispersion
The dispersion of the saturation component is not directly

affected by the translations of the classes in the C1C2 plane,
but for the variation of the class samples intensities (1). The
reason is that saturation is a linear function of the C1 and C2
components and varies inversely with Y, as (2) shows. In this
sense, it can be demonstrated that the saturation deviation (os)
remains constant if all the intensity values of the class are
equal. In this paper, an equation to model the behavior of the
os of a class when it moves in the HS plane, as a function of
its mean in the C1 C2 plane (1'tc and uc2), has been obtained.
The first step to model the saturation dispersion is to choose

one of the tree color sectors delimited by the tree
discontinuities of the saturation function (2). For the (0-22t/3)
sector, from the definition of variance and using (2), the
following expression is obtained:

o- (CkC2)3 k -(I-c1 +,j1-C2)11r-t (13)
Nk=1

Knowing that the Clk and C2A components can be expressed
as a function of the class mean, i.e., C,k-(,ucl+\Ak) and
C2 -(Iuc2+Vk), where A,k and Vk are the increments in Clk and
C2A with respect to its mean, and substituting in (13), the
saturation variance as a function of the class mean is obtained:

2
= kN(a' 4C +d4tnCI +b40l0)IC +el4t0) +Cs C4 +fs

Q

[(

0-%
.- C

\II

(14)

where,

kN=1/(9N),as=(k1-2k7/py), b =23a., c =3a5,

d, 2(k24-F3k4- k8/ y-3kg/1y ),

es=2(3k2+3k4-3Ik8/fy -3kg/1iy), fs =(k3+21Fk5-+3k6).
(15)

C

Fig. 1. Correspondence of a class Q in the C, C2 and HS planes. Calculation of
the hue deviation by means of the uncertainty ellipse in the C, C2 plane.

In (15) ki uT(Y2) 'u, k2=UT(Y2)-lA, k3= T(y2)-'A,
k4 UT(Y2)-1V, k5=AT(y2) 'V, k6=VT(Y2) 'V, k7=uTy u,
k8=uTY-'A and k9=uTY-'V; where u is a Nxl auxiliary vector
formed by l's. A, V and Y are expressed by:
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A=[AlA2..AN]T,V =[V1V2 ..VN]T, Y!= OY2 .. (16)
O O YN_

A, V and Y remain constant in the translation and are called
invariants of the dispersion of saturation. As can be seen, A
and V indirectly represent the mean deviations of the
components of the class in the C1 C2 plane, and
u -E{diag(Y)}.

In the range (27t3-47t3) the coefficients are:

kN =4kN, a, =(k1-2k7/ty), bs = 0,c. =°,
(17)

d, = 2(k2-k8 /ty), e5 = On fs = k3.

Substituting the values of (17) in (14), a quadratic equation in
the variable I'tc is obtained. This is due to the saturation
expression in this range that depends only on the C1
component (2).

In the range (47t/3-27t) the coefficients are given by:

kN=1/(9N), as=(k1-2k7/py) b5 --2]3a5, c =3a5,

d5=2(k2-43k4-k8/fty-KIF3k9/fy), (18)

es =2(-NF3k2+3k4+NF3,8/,uy-3k/,u/y), fs =(k3-2NFk,5+3k6 )

III. APPLICATION OF THE PROPOSED MODELING TO THE
PREEXISTENT TECHNIQUE TO IMPROVE THE
SEGMENTATION IN THE HS SUB-SPACE

The technique to improve the segmentation in the HS sub-
space by means of a linear transformation in the RGB space
has been recently published in [5]. The linear transformation
described in [5] consists on adding a vector in RGB
components (in principle, a zero-mean vector) to each captured
RGB image, to obtain a higher separation between the object
and background classes in the HS plane. As a result, the
segmentation of the desired object in the HSplane is improved.
This technique takes advantage of the non-linearities produced
by the HSI space to achieve a higher separation between the
classes. The goal of the algorithm proposed in [5] is to obtain
an optimal vector (ir) to add. This vector has a direct
relationship with the separation angle (0-J) between the mean
vectors of the classes in the C1 C2 plane (cio and ciB) and,
therefore, of the mean vectors hio and hiB of the same classes
in the HS plane. The algorithm proposed in [5] has been
parameterized as a function of the separation angle (O-J). In the
first phases of the algorithm, the classes in RGB are
transformed to the YC1C2 space, the mean vectors of both
classes are calculated (co and CB), and the difference vector d,
between them is obtained. The invariants are obtained from d,
(magnitude 11d,11 and phase c of d,). Afterwards, an iterative
process to obtain the optimal ir is executed. In each iteration:
the value of 0. is increased by 10, the translation vector ic
corresponding to that increment is obtained, both classes are

translated in the C1 C2 plane and transformed to the HS plane,
and afterwards, the class separation measurement index !3HSn iS
obtained. Finally, this value !3HSn is registered. This process is
repeated until a O.in that produces the RGB values of the mean
vectors higher than one is obtained. This !3HSn is a normalized
measurement index obtained from the particularized Fisher
Ratio (FR), defined as:

FRH =Oin/ U5HO+UHB , FRs=l dls / UO+Q B (19)

where FRH and FRs are the FR of the H and S components
respectively; ds;=,-usUSB is the distance between the saturation
means of both classes, Cso and oSB are the standard deviations
of the saturation for both classes and, finally, oHO and oHB are
the hue deviations. The measurement index is given by:

(20)

where H3Hn=(FRH-l)FRH, j3s,=(FRS-l)FRs and kh is a
weighting factor that takes values between 0 and 1.
The proposal described in section II is used for each class to

obtain the deviations (o-s, oSB, oHo and oHB) implied in the
calculation of !3Hn and j3s, (19). In this sense, the main
contribution of this work is using only the expressions
dependent on the translations to estimate the deviations in the
iterative process to obtain the optimal vector ir to add. That is,
(7), (10-12) are used for the estimation of the hue deviation
(uH) and (14) is used for the saturation deviation (os). The use
of (14) is conditioned by the range where the class is located,
using the coefficients given in (15), (17) or (18). It is important
to note that those coefficients are not recalculated in each
iteration, implying a remarkable reduction in the processing
time. After the iterative process, the algorithm ends with the
calculation of the maximum of the observation function formed
by the pairs (QHSn, 0 in obtaining an optimal S (0opt) when !3HSn
is maximum. The vector to add ir is obtained with this Oopt.

IV. EXPERIMENTAL RESULTS

The effectiveness of the proposed method has been
evaluated using a bank of real images. The technique of
segmentation improvement of [5] adding the modeling
proposed in this paper has been applied. Fig. 2 and Fig. 3
present two illustrative examples that show the hue and
saturation deviation curves, calculated (measured) and
estimated by means of the proposed modeling. The curves for
both classes, object (0) and background (B), are shown. Fig. 4
depicts the curves of the class separation measurement indexes
!3HSn, real and approximated, obtained from the calculated and
estimated deviations for both cases. All these curves are
displayed as a function of the angle Sin2. In the first stage of
the tests N=50 samples were used and the increment of the
iterative process was 10=5.

Table I shows the errors produced when estimating the hue
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13HSn =khl3Hn +(I-kn)13Sn

Authorized licensed use limited to: Univ de Alcala. Downloaded on July 26,2010 at 17:50:14 UTC from IEEE Xplore.  Restrictions apply. 



a)
0.09

0.08

a)

0.07

0.06

0.05

20

0.0 16

O (Measured)
O (Estimated)
B (Measured)
B (Estimated)

0.8
1)

0.6

0.4

40 60 80 100

Oin2 ( )

0.014 0

0.012

0.01

0 (Measured)

0.008 O (Estimated
= B (Measured)
. B (Estimated)

0.006
20 40 60

120 140 160

real II
approximated r -
max. real Ii

+ max. approximated

20 40 60 80 100 120 140 160

6in/2 ( )

2)
0.8

0.6

0.4

80 100

Oin2 ( )

120 140 160

Fig. 2. Curves of calculated (measured) and estimated deviations for case 1:
a) hue deviations for both classes, b) saturation deviations.
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Fig. 4. Class separation measurement indexes (/3H&), real and approximated,
for both cases: 1) case I and 2) case 2.

and saturation deviations for five cases of the image bank. The
estimation errors (Error) in RMS (Root Mean Squared) values
and the error percentages (%E) can be observed. The values
Error and %E are obtained for both classes (O and B).
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In order to evaluate the efficiency of the proposed modeling
in processing time, diverse tests have been carried out using
the iterative algorithm of the segmentation improvement
technique proposed in [5]. Different number of samples (N=50,
100, 200, 500) has been used in these tests, in a PC with Intel
Centrino processor at 1.5GHz. In Table II, the processing times
(average) required by the iterative process for the 5 cases of
Table I along with the number of iterations (m) are presented.
The processing time obtained calculating the variances in each
iteration is identified by CPT (variance Calculation Processing
Time), and the processing time if the variances are estimated
(proposal of this paper) is identified by EPT (variance
Estimation Processing Time).

TABLE I
ERRORS OF THE ESTIMATION FOR FIVE EXAMPLES

Hue deviation Saturation deviation
0 class B class 0 class B class

case
Error % Errfor % Errfor % Errfor

cs (RMS) __ (RMS) (RMS) (RMS)
1 1.48x103 2.04 2.24x103 2.88 0.24x103 1.98 0.88x10-3 5.56
2 6.94x10-3 7.49 0.46x10-3 1.72 0.33x10-3 2.05 0.88x108 2.3x10-
3 22.51x10-3 15.38 1.61x10-3 2.12 4.60 x10-' 10.93 0.79 x10- 7.93
4 5.42x10-3 6.51 1.39 xI0-' 3.06 1.06 xI0-' 6.77 0.30 xI0-' 4.53
5 4.57x10-3 7.39 1.52 x10-3 3.75 0.36 x10-3 2.62 0.62 x10-3 9,47

0.006

0.0040
40 60 80 100

0i7l2 ( )

120 140

Fig. 3. Curves of calculated (measured) and estimated deviations for case 2:
a) hue deviations for both classes, b) saturation deviations.

Table II shows that processing times when the proposed
modeling is applied (EPT) are lower than the processing times
if it is not applied (CPT). This conclusion is valid for all the N
values. Independently of N, it could be said that EPT is
practically constant, as depicted in Fig. 5. That figure shows
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how CPT considerably increases as N increases, while EPT
remains constant. This method guarantees real-time processing
even with very high N values, a big problem in some

segmentation applications.

TABLE II
FIVE EXAMPLES CPU TIMES

CPU Times (milliseconds)
case m N=50 N=100 N=200 N=500

CPT EPT CPT EPT CPT EPT CPT EPT
1 49 59.1 19.0 92.2 18.9 180.1 18.9 519.9 19.1
2 37 46.5 15.2 70.9 14.9 131.4 14.8 415.7 15.3
3 59 73.9 21.6 115.6 21.2 215.6 21.3 653.4 21.3
4 46 58.1 17.8 91.4 17.8 170.9 17.6 607.7 17.9
5 51 62.8 19.2 100.9 19.4 190.7 19.5 576.5 19.2

V. CONCLUSIONS

A method to model the dispersion of the classes projected in
the HS plane as a function of the respective class mean in the
C1 C2 linear chromatic plane has been presented.

It has been demonstrated that the proposed modeling of the
hue and saturation dispersions has a good accuracy and very

low processing time independently of N samples. Therefore, it
can be used in different segmentation alternatives in real-time
applications, such as the one proposed in [5] (where the hue
and saturation variances were calculated instead of modeled).
When the modeling is applied, the results show a

segmentation quality similar to the obtained in [5], with the
advantage of a remarkable reduction in the processing time.

Finally, after applying the segmentation improvement
technique of [5] and adding the modeling proposed in this
paper, two experimental tests of segmentation for the image
bank have been performed. Fig. 6 shows the results of these
segmentations, where the left image is the original one, the
central image has been segmented with the technique of [5]
and in the right image, the technique of [5] along with the
proposed modeling of the hue and saturation dispersions has
been applied. It can be observed that the technique including
the estimation of the variances by means of the proposed
modeling produces similar results in the skin color
segmentation.

0.8

o 0.6a)C/)
I-,
E 0.4

n. 0.2
C-

0 _
o

CPT
EPT

100 200 300 400
Number of Samples (N)

500

Fig. 5. Curves of processing times: calculating the variances (CPT) and
estimating the variances by means of the proposed modeling (EPT).

(a) (b) (c)
Fig. 6. Results of the segmentations: (a) original images, (b) images
segmented with the technique of [5], (c) images segmented with the technique
of [5] along with the proposed modeling.
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