Third Conference of the European Society for
Fuzzy Logic and Technology

EUSFLAT 2003

PROCEEDINGS

September 10 - 12, 2003
Zittau, Germany
ACKNOWLEDGEMENTS

The organizers of the 3rd EUSFLAT Conference would like to thank all institutions and people without them this conference could not be held. Special thanks are due to the following firms and organizations for their help, financial support and sponsorship:

- Deutsche Forschungsgemeinschaft (DFG)
- Deutscher Akademischer Austauschdienst (DAAD)
- Vattenfall Europe Generation AG & Co. KG
- Springer-Verlag
- Shaker Verlag GmbH
- Vieweg & Sohn Verlagsgesellschaft mbH
- R. Oldenbourg Verlag
- RWE NUKEM Gruppe
- IPM staff
- Saechsisches Ministerium für Wissenschaft und Kunst
A hierarchical fuzzy rule-based learning system based on an information theoretic approach .. 534
A. Waldock, B. Corse, C. Melhuish

A Type 2 fuzzy system modelling algorithm .. 539
K. Kbite, O. Uncu, I.R. Tuerksen

Analysis and data processing at the stage of conceptual designing of complex objects .. 544
A. Sokolov, O. Radionov, N. Bakumenko

Deduction in a GEFRED database using Datalog .. 550
I.J. Blanco, O. Pons, J.M. Serrano, M.A. Villa

Relational Takagi-Sugeno models for rainfall-discharge modeling .. 554
H. Vernieuwe, B. De Baets

Decision-theoretic approaches in fuzzy rule generation for diagnosis and fault detection .. 558
problems
S. Beck, R. Mikus, J. Juwel, G. Breithauer

Expert and induced knowledge for intelligent motion analysis of ground robots .. 564
S. Guillaume, L. Magdelena, M.A. Soete, L.M. Bergaza, R. Flores, M. Ocola

Fuzzy identification of rock layers with anomalous pressure .. 570
G. Semenov, I. Chygur

"Fuzzy Scheduling"

The fuzzy single machine scheduling problem - some general properties .. 577
A. Kasperski

Minimisation of the expected weighted number of jobs being late with fuzzy processing time in a one machine system .. 582
B. Gladysz, D. Kuchta

Latest starting times and floats of activities in network with uncertain durations .. 586
P. Zielinski

Vehicle routing and scheduling with fuzzy time windows and fuzzy goal .. 592
P. Kobylianski, M. Kulej

"Fuzzy Logics"

Fuzzy logic: A survey .. 599
P. Holec

Clarifying Eikas's theoretical result .. 604
A. Pradera, E. Trillas, C. Moraga

On definability of maximum in left-continuous t-norms .. 609
F. Esteva, A. Garcia-Cerda, C. Noguera

A note on the structure of MTL-chains and left-continuous cancellative T-norms .. 614
R. Horcik

From fuzzy type theory to fuzzy intensional logic .. 619
V. Novak

Extensionality and continuity .. 624
M. Dvorkova

Approximation abilities of perception-based logical deduction .. 630
V. Novak

On the complexity of propositional logics with an involutively negation .. 636
Z. Hanikova

Homogenizing multi-adjoint logic programs .. 640
J. Medina, M. Ojeda-Aciego

An XML vocabulary for soft computing .. 645
A.R. de Soto, C.A. Capdevila, E.C. Fernandez

"Fuzziness and Probability"

Propagation of uncertainty involving imprecision and randomness .. 653
C. Budris, D. Dubois, H. Forger

Fuzzy models for prediction based on random set semantics .. 659
N.J. Randam, J. Lawry

On construction of Joint observable on Lukasiewicz tribe .. 665
T. Kroupa

Two fuzzy probability measures .. 669
Z. Karpiszek, K. Slavicek

Fuzzy-evidence approach to uncertainty modelling and reactivity .. 675
B.S. Bukiiewicz

Bayesian networks for continuous values and uncertainty in the learning process .. 679
I.F. Baldwin, E. Di Tomasso

Edge orientation-based fuzzy Hough transform (EOFHT) .. 683
E. Monsen, J. Sobrevilla, P. Mares
Expert and induced knowledge for Intelligent motion analysis of ground robots

Serge Guillaume, Luis Magdalena
Dept. Applied Mathematics
Universidad Politecnica de Madrid
Madrid 28040
Spain
lilyone@mat.upm.es

Miguel Angel Soelo, Luis Miguel Bergasa,
Ramón Flores, Manuel Ocaña
Department of Electronics.
University of Alcalá
Alcalá de Henares 28871
Spain
michael@depeca.uah.es

Abstract

The paper describes the knowledge extraction process in the application of a fuzzy system, using expert and induced knowledge, to the detection of motion problems in ground robots.

Keywords: Robot, Expert, Induced, Knowledge, Fuzzy

Introduction

The application described in this paper is developed in the framework of ADVOCATE II project [1].

The overall objectives of this project are:

- To construct an open, modular, and generic software architecture for autonomous robotic systems diagnosis and control.
- To develop or improve a set of intelligent diagnosis modules as well as expert systems architecture and tested in operational applications.
- To carry out practical tests and demonstrations on a set of operational prototypes in order to prove operability and efficiency of this solution in several application fields, and particularly for Autonomous Underwater Vehicles (AUVs) and Autonomous Ground Vehicles (AGVs).

In what concerns this paper, ADVOCATE II defines an architecture build for the purpose of combining different intelligent techniques for diagnosis, recovery and re-planning into autonomous vehicles. The global objective of the architecture is to enhance the level of reliability and efficiency of an autonomous robotic system.

and out) and detection of open doors for inspection. The Vehicle Pilot ing Module can also overcome the operator actuation in teleoperated mode for safety reasons so as to avoid collisions.

At any time, the operator can interrupt the mission and return the vehicle to the base station by regaining complete teleoperation command. An emergency stop command can also be issued upon severe failure conditions so as to preserve vehicle safety. During the execution of the mission, several problems or failures can occur yielding the vehicle to abnormal behaviour with respect to the expected one, and thus imposing proper finalisation. ADVOCATE II will be used to do diagnosis and/or recovery actions for these failures using the modular and intelligent diagnosis system developed in this project. These are provided in the following sections.

Different problems have been considered in the case of BART: AGV trapped, limited capability of motion, Actuator blocked or tangled, Motor stopped, Energy too low for complete mission.

Figure 1. Basic agent for robotic tasks (BART)

BART is a ground vehicle commanded in teleoperated mode (a Remotely Operated Vehicle, ROV, indeed) by a human operator from a base station through a wireless link. The vehicle is intended to perform surveillance tasks after hours in a large building composed of corridors, halls, offices, laboratories, etc.

The operator is in charge of global vehicle navigation by remotely commanding its actuators according to the images that are continuously transmitted through a wireless ethernet link from the vehicle to the base station. Information concerning proximity sensors (the vehicle is equipped with a ring of ultrasonic sensors) is also transmitted for monitoring. The operator guides the vehicle to key positions throughout the building, such as corridor entrances. Once located at those points, the vehicle starts an autonomous local navigation manoeuvre to carry out the reconnaissance and surveillance of the corridor, in a narrow environment where complete teleoperation is complex to realize. The manoeuvre includes navigation through the corridor (in

Problem description

We will now concentrate on the motion problems, that include the situations where AGV is trapped, has a blocked or tangled actuator. These problems are related to different situations as the collision with an obstacle (usually not detected by sensory means) that can even be dragged, or the entanglement of vehicle wheels.

On these situations, the diagnosis system will work on the basis of several symptoms that can be considered to determine the problem. These symptoms are mainly related to a deviation of the motion from the expected motion according to model, a second symptom could be related to a divergence in between the commanded and the obtained revolutions of the engine, and finally, the deviation in consumption from what should be produced.

The diagnosis module will try to determine these motion problems according to the described symptoms. Once defined the problem, a recovery action will be defined to produce a special manoeuvre to get rid of obstacle, and subsequently to resume the mission.

To analyse the problem, several experiments have been done with different kinds of obstacles (and different configurations of the obstacle-robot situation) to be able to generate an overall view of the problem. The objective of the experiments is twofold: to create experience (then producing expert rules to define the knowledge about the problem) and to generate data to be used for additional knowledge induction.

Expert knowldege

To deal with complex problems such as robot motion, expert knowledge is of prime importance. The expert knows the main influential variables and is able to describe their behavior. From our experience, expert reasoning uses linguistic terms and is based on prototypes.

We choose the fuzzy logic formalism [2] for its well known linguistic concept modeling ability. The fuzzy rule base is a close and exact natural language. On the other hand, as they are standard universal approximators, fuzzy inference systems can be used for knowledge induction processes. The cooperation between expert knowledge and induced knowledge highly depends on induced rule interpretability and will be considered in the section devoted to Experimentations.

As the objective is not the design of a complete expert system, the process of expert knowledge extraction can be kept at a high abstraction level. The process can be limited at the expert domain, without considering implementation details which are not part of expert knowledge. For example the expert can only indicate the number of linguistic terms he needs for a given variable without defining the corresponding fuzzy sets.

The first step is then to define the number and nature of variables that are involved in the diagnosis process according to the domain expert experience. Considering the problem of detecting abnormal dynamics due to obstacles dragging or even stalling, as will be described in the following section, the next steps are proposed after appropriate preprocessing provided by the vehicle pilot ing module.

- Difference of battery voltage. It provides a differential measurement of the decrease suffered by the battery voltage when colliding against an obstacle. This decrement is directly linked to the vehicle consumption, that should increase upon collision, subsequently producing the battery voltage to go slightly down (see figure 2).
- Linear and angular velocities. Both commanded and measured velocities are included:
 - measured linear velocity.
 - commanded linear velocity.
 - measured angular velocity.
 - commanded angular velocity.

As will be graphically demonstrated in the next section (figure 2), a fast but deep undershoot in vehicle velocity takes place upon collision with an obstacle, until the velocity controller regains
null and its derivative is zero then the environment surrounding the robot is no changing. If on these circumstances the vehicle odometry system measures a velocity different from zero, it can be deduced that the vehicle is stalled and its wheels are slipping. The rule can be formalized as follows:

\[
\text{IF Range measurement is not null AND Derivative of range measurement is zero AND Measured linear velocity is not zero THEN Vehicle stalled.}
\]

Another example of expert rule can be produced for the collision and drag case, according to the situation illustrated by Figure 2. The rule is provided as follows:

\[
\text{IF Underwheel depth is high AND Measured velocity is low AND Difference of battery voltage is medium THEN Vehicle drags obstacle.}
\]

Experimentations

In complement with expert knowledge, data are likely to give a good image of variable interactions. For this purpose, some real experiments have been performed so as to collect data concerning the vehicle battery voltage and linear velocity. Thus, in a first trial a small but heavy obstacle was deliberately introduced in the environment in order to interrupt the vehicle trajectory during autonomous operation. Due to its small size, the obstacle can not be detected by the ultrasound-based obstacle detection module onboard the vehicle. Accordingly, the velocity controller adapts to this situation by increasing the actuators torque so as to rapidly attain the commanded reference velocity. This causes the vehicle to drag the obstacle along its way by increasing the battery current consumption, and consequently, the battery voltage goes slightly down. An illustrative example of this behavior, for two different commanded linear velocity, is shown in Figure 2, where the vehicle battery voltage and linear velocity are depicted for a real collision-and-drag case. The effect of this situation is reflected in measured velocity of the vehicle when colliding and dragging the obstacle. This effect is an undershoot in velocity that is marked in the figures. The undershoot in left figure has a width of 40 ms and a depth of 25% of velocity, while in the right one has a width of 110 ms and a depth of 44%. These values will be considered in the next section to derive the fuzzy partitions corresponding to underwheel_depth.
But this is not the only motion problem that can occur during BART operation. In fact, the vehicle could get completely stalled upon collision, depending on the obstacle’s weight and roughness. Similar experiments have been carried out under these circumstances intended to gather as much real data as possible. These data will help produce the induced complementary knowledge necessary to provide accurate diagnosis for BART motion problems.

Knowledge extraction is made up two different steps. First, raw data has to be processed to be put in the form of the variable used by the expert. For example, the velocity signal shown in Figure 2, after being filtered in order to remove noise, derivative must be obtained to build the variable *Derivative of linear velocity*. The second step is the rule induction one. As rule base interpretability is of prime concern, several constraint are used to ensure that induced rules are interpretable rules [3,4]. Three conditions are to be met:

- Readable fuzzy partitions (reasonable number of fuzzy sets, distinguishability, significant overlapping level, completeness)
- A small number of rules
- Incomplete rules for large systems

The induction methods includes fuzzy partitioning, the first step of the procedure generates a hierarchy of fuzzy partitions of different sizes for each input variable. Figure 3 shows the result of deriving a fuzzy partition for the variable *Undershoot depth* by working on the linear velocity of the vehicle (once filtered by a Kaiman Filter) using HPP partitioning method [5]. After analysis by the experts, the partition with four membership functions has been considered as the more appropriate to be used. In addition, the expert has introduced one additional fuzzy set (Figure 4) to represent *Undershoot depth null* considering that this case was not contained in the experimental data. A similar process is carried out for the rest of variables.

The second step generates several FIS of increasing complexity. At each iteration one fuzzy set is added on a few input variables, chosen to best improve accuracy, using the previously found hierarchies of fuzzy partitions. Only the most influential rules are kept for each system. The trade-off between complexity and accuracy is user controled.

The final step consists in rule base simplification with the objective to obtain incomplete rules. Between global variable removal and selection done at rule level, an intermediate selection level allows for evaluating the influence of a given variable within a context defined by the other inputs, and represented by a group of rules. The simplification stage tolerates some loss of accuracy while being guided by new indices complementary to the usual numerical performance indexes. According to the degree of simplification several FIS are designed.

Reference

Acknowledgements

We would like to acknowledge the partners of the ADVOCATE II project. The consortium consists of the following partners: University of Alicante, GETRONICS DECAN, Universidad Politécnica de Madrid, ATLAS Elektronik GmbH, Irsener, HUGI Expert A/S, INNOVA S.p.A., and E-MOTIVE. The European Commission (IST-2001-2458) supports this work.