Validation Method of a Self-Driving Architecture for Unexpected
Pedestrian Scenario in CARLA Simulator

Rodrigo Gutiérrez!, J. Felipe Arango!, Carlos Gomez-Huélamo!, Luis M. Bergasa®,
Rafael Barea! and Javier Araluce!

Abstract— This paper introduces a method to validate au-
tonomous navigation frameworks, in simulation using CARLA
Simulator, fulfilling the requirements of the Euro-NCAP eval-
uation. We propose the protocol for evaluating an unexpected
pedestrian scenario, where a walker suddenly invades the road
and the vehicle has to react in a safe way. Standard validation
metrics are created for this use case, which are generalizables
for other use cases. To support the proposal, we describe our
ROS (Robot Operating System) based Self-Driving architecture,
open source and implemented in an electric vehicle. Then, we
explain the procedures and requirements needed for the valida-
tion protocol that we propose. Finally, we show the metrics and
results obtained in simulation for different ego-vehicle velocities
and weather conditions. The scenarios implemented in Carla
are publicly available 2.

I. INTRODUCTION

Autonomous vehicles (AVs) have become one of the
most important engineering challenge of the last decades.
These AVs must perform driving behaviours with a greater
reliability than humans, solving transportation problems such
as traffic jams or accidents. Many agents that can influence
in drivers decisions makes the driving task really complex,
that is why multiple sensors perceiving the surrounding
environment in real-time and robust algorithms evaluating
the obtained data are needed for this purpose.

In recent years, AVs have been developed for both research
and commercial objectives. As result of this competition,
great self-navigation systems have come up. Some of them
in the automotive industry such as Tesla, Google or Uber [1],
and others in competitions such as DARPA Grand Challenge
[2] or CARLA Autonomous Driving Challenge [3].

We are a research group from the University of Alcala
(Spain). In our project, Techs4AgeCar, the main goal is to
implement an open source autonomous electric car [4]. For
this purpose, we undertake all the design stages involved in
the design of an autonomous vehicle: mechanics, electron-
ics, perception, planning, control, navigation, validation in
simulation and in a real environment.

In this paper we present our architecture, implemented
in an electric vehicle. We use ROS [5] as an standard
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of communication for our software modules, which are
encapsulated in a Docker container [6] that can be run in
both real environment and simulation, using the novel and
hyper-realistic simulator CARLA [7]. Each of these modules
is related with a navigation layer: decision-making, control,
localization, mapping, planning and perception [8].

Our goal in this paper is to validate our architecture by
designing and implementing standard protocols. In order to
do this, we have developed detailed tests and assessments
procedures using standard metrics. These test scenarios were
set up based on Euro-NCAP [9]. From all of them, we
will focus on the unexpected pedestrian scenario, where the
vehicle has to react safely against a sudden road invasion
by a pedestrian. We have created this scenario for different
velocities and weather conditions. This paper describes both
the test design process and the assessment protocol.
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Fig. 1: Scenario simulation overview

The remaining content of this work is organized as fol-
lows. The next section presents the main vehicle testing
protocols of the state of the art and the CARLA Autonomous
Driving Leaderboard. Section 3 briefly describes our vehicle
architecture. Section 4 explains the validation protocol for the
unexpected pedestrian scenario in detail. Section 5 shows the
obtained results. Section 6 deals with the conclusions of the
paper and with the future works.

II. RELATED WORKS

A considerable amount of research works and studies,
related to pedestrian detection and collision avoidance be-
havior have been presented in the literature [10], [11], where
perception or control module are analyzed in depth. However,
our goal in this work is to evaluate a whole architecture,
where all modules are integrated, using common metrics for
all frameworks. In this context, we can find the following
options:
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Fig. 2: Techs4AgeCar architecture

A. New Car Assessment Programmes

There are several New Car Assessment Programs
(NCAPs), which are a set of protocols to evaluate the
safety of vehicles. Currently, evaluations are focused on the
structure of vehicle and the Advanced Driver Assistance
Systems (ADAS), such as: Adult Occupant Protection (AOP),
Child Occupant Protection (COP), Autonomous Emergency
Braking (AEB) , Speed Assist Systems (SAS), etc. The most
important NCAPs, at the present time, are:

o European New Car Assessment Program (Euro-NCAP):
is the most widely used performance assessment, was
founded in 1997, within the scope of the collaboration
of the countries of the European Union [12].

e China New Car Assessment Program (C-NCAP): is
a research and development benchmark for vehicle
manufacturers in Asio. Most of its program is based
on the Euro-NCAP [13].

« National Highway Transportation Safety Administration
(NHTSA): is an agency of the U.S. federal government,
part of the Department of Transportation. They have
published research reports, guidance documents, and
regulations on vehicles equipped with ADAS [14].

o Autoreview Car Assessment Program (ARCAP): is the
first independent evaluation program for cars in Rus-
sia. They publish their studies in a newspaper called
Autoreview [15].

But these programs, so far, do not have specific protocols
to evaluate self-driving architectures. Also, they are quite dif-
ferent among them, they use different scenarios, parameters,
ratios, etc. They also do not specify the equipment to be
used.

B. CARLA Autonomous Driving Leaderboard

The objective of the CARLA Leaderboard is to evaluate
the performance of different navigation architectures in re-
alistic traffic situations. It is an open-source platform that
allows square and reproducible evaluations.

The autonomous navigation architectures are confronted
by a set of predefined routes. For each route, vehicles start

at a predefined point and must navigate to a destination
point. The routes will occur in a variety of areas, including
highways, urban scenes and residential districts.

The multiple traffic situations are based on the NHTSA
typology. The simulation weather can be changed, allowing
evaluation in a variety of weather conditions (daylight,
sunset, rain, fog, and night).

At the time of writing this article, there are no standard
evaluation protocols for autonomous vehicles, which allow
us knowing the performance of each architecture for different
scenarios. On the other hand, the CARLA Leaderboard is not
easily reproducible in a real environment.

In this paper, we provide a protocol to validate autonomous
navigation architectures, in simulation and in real scenarios,
giving a global score about its performance. We also provide
the results obtained for our architecture, which will serve as
a base to compare the performance of different architectures.

III. OUR AUTONOMOUS ARCHITECTURE

Our autonomous navigation architecture is divided in
different modules, as shown in Fig.[2| These modules process
the information in an asynchronous way and share informa-
tion using ROS inter-process communication, allowing the
different modules being executed in parallel. The subscrib-
ing/publishing method allows communication without loos-
ing information nor blocking messages between modules. In
this paper we focus in the modules that play an important
role in the unexpected pedestrian scenario:

A. Mapping/Planning module

One of our framework strengths is its portability between
simulation and real environment. A map based on the univer-
sity campus has been designed using the VectorZero Road-
Runner [16] application. The map information is processed
using the CARLA Python API [17], in order to generate the
user interface in RVIZ.

For the path planning task, some code has been developed
in combination with the “libcarla” library to create a graph
describing the road map. A destination goal is introduced by



the user, then the path planning has been solved applying the
graph-based method A* [18].

A list of waypoints describe this trajectory, which is
published in a ROS topic. Also, there is an online planning
module, that provides information about the lanes state and
the regulatory elements existing in the HD map to the
perception module.

B. Perception module

In terms of environment perception, we carry out tracking-
by-detection [19] using as input Bird’s Eye View objects
obtained through the sensor fusion of depth map and stereo
RGB camera information. Despite the fact that in our real-
world prototype we perform a late sensor fusion between the
BEV stereo camera objects and the BEV laser objects branch,
at the moment of writing this article CARLA does not offer
enough quality in its laser pointcloud, even increasing the
number of channels and points per second, so as to obtain
similar results that in real-world datasets. Then, this set of
BEV obstacles feeds a simple yet accurate tracking pipeline
made up by a BEV Kalman Filter [20], that predicts the
state of the objects from the current frame and update the
object state based on the detected bounding boxes at current
frame, and a Khun-Munkres (a.k.a Hungarian algorithm
[21]) that associates the predicted trajectories with current
detections. Finally, a B/D (Birth and Death) memory deals
with the newly appeared trajectories (those matched trajec-
tories that exceeds f,,;, frames) and dissapeared trajectories
(unmatched trajectories exceeding age,,,, frames).

C. Decision Making module

The decision making module evaluates the information
provided by the perception module, the actual state of the
vehicle and the HD map features to select the adequate
behaviour for each driving situation. We define two types
of behaviours:

Background behaviours, just as the unexpected pedestrian
or the adaptive cruise control (ACC). These are continuously
running, expecting a close vehicle or pedestrian to reduce the
vehicle speed in a safe way. Standard use cases, as might be
a stop, a give way, an overtaking or a crosswalk. This module
is done using Petri Nets. For more information we refer the
reader to our previous publication [3].

D. Control module

Our controller [22] performs a smooth interpolation of
the waypoints given by the planner. Before the navigation
starts, a velocity profile is generated using the curvature
radius of each trajectory section. During the navigation
the speed command is adjusted using this profile and the
steer command is set using LQR techniques to ensure the
trajectory tracking. The existing delays in the localization
module and the vehicle actuators is compensated in the
control loop.

E. CARLA Simulator

CARLA is an hyper-realistic simulator developed to de-
sign and validate autonomous driving systems. This simula-
tor provides open digital features that can be used to create
scenarios, vary weather conditions, define different sensors
distributions, generate maps and much more. We aim to
meet an architecture where the results in the simulator can
be extrapolated to the real environment, so we can develop
algorithms and validate them before we test them in our real
vehicle.

We use the provided carla-ros-bridge as an interface be-
tween the simulator and our architecture. All sensors data of
the simulator is published in ROS topics by this package, also
the output signals generated by our system is commanded to
the simulated vehicle through this bridge.

FE. Localization

This module is in charge of positioning the vehicle on a
map with centimeter precision and in real time. Accurate and
robust localization is a primary task for autonomous vehicle
navigation.

In a real environment, we estimate the vehicle’s pose
using the fusion of data provided by a differential GNSS
(Global Navigation Satellite System) and by an encoder-
based odometry. To improve the accuracy and reliability
of the GNSS system, differential positioning techniques
(DGNSS) and Real Time Kinematics (RTK) were used [23].

On the other hand, in simulation, CARLA provides the
exact location of the vehicle via ROS, so a localization
module is not required.

G. Drive-By-Wire

The Drive-By-Wire module, which is implemented in the
real vehicle, receives the steer and speed commands sent by
the Control module and generates the electric signals to feed
the electric motor and the steering wheel. [24].

We have implemented PI controller that equals this module
in simulation. This module receives the controller output and
generates normalized throttle, brake and steer commands,
which are the input signals required by the simulated vehicle.

IV. TEST VALIDATION PROTOCOL

We propose a test validation protocol with standard metrics
for autonomous vehicles. For the unexpected pedestrian use
case, we used the Euro-NCAP AEB VRU test protocol
v3.0.2. [25] as reference, adjusting it for an autonomous
navigation architecture.

A. Test Scenarios

We implemented two of the six scenarios proposed by
Euro-NCAP. Fig. [ shows Car to Pedestrian Nearside Adult
(CPNA) scenario. The pedestrians starts in the closest side-
walk to the vehicle.

Fig. [] shows Car to Pedestrian Farside Adult (CPFA)
scenario. The pedestrian starts in the farthest sidewalk to
the vehicle. In both cases, the pedestrian invades the path
unexpectedly and the vehicle must detect the pedestrian
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Fig. 4: Car to Pedrestian Farside Adult (CPFA) scenario

and react quickly, avoiding the collision or reducing the
impact speed as much as possible. Avoidance maneuver is
not contemplated in the protocol.

The pedestrian speed (v,,) is 5 km/h for the CPNA scenario
and 8 km/h for the CPFA. The vehicle speed (v,) ranges from
10 km/h to 60 km/h. We calculate the distance (d), at which
the pedestrian must start walking so that impact point (Pr)
is in the center of the lane. Table [l shows the parameters for
each test.

TABLE I: Test parameters

Scenario Vy Vp d SCOT€max
10 km/h 8.0 m 1.0
20 km/h 16.0 m 1.0
30 km/h  5km/h 240 m 2.0
CPNA 40 kmvh 320m 3.0
50 km/h 40.0 m 2.0
60 km/h 48.0 m 1.0
10 km/h 7.5 m 1.0
20 km/h 15.0 m 1.0
30 km/h 8 km/h 225 m 2.0
CPFA 40 km/h 30.0 m 3.0
50 km/h 37.5 m 2.0
60 km/h 45.0 m 1.0

B. Pedestrian Target

A 3D human appearance dummy is required for the
scenario. It has to be flexible and manageable in order
to acquire a walking position, and has to be designed so
cameras, LIDARs and radars can detect it. The adult dummy
height is 180 cm and its clothing is made up by a long-sleeve
black shirt and blue trousers as shown in Fig. [I]

C. The Score

We propose to use standard metrics to validate different
self-driving architectures and to can compare them in an easy
way. Using these metrics we calculate an score, that evaluates

the performance of the architecture. We base our score in the
Assessment Protocol - VRU v10.0.3 [26]. We generalize the
referred protocol, defined only for day and night time, to
different weather conditions.

The score for each test is calculated based on the speed
reduction of the vehicle:

e For v, less than or equal to 40km/h:

— If the vehicle stops without collision, it achieves
the highest score:

SCOT€test = SCOTE€max (1)

— If the vehicle collides, its score is defined as
follows:

Vtest — Vimpact (2)

SCOT€test = - SCOTemax

Vtest

« For v, higher than 40km/h:
Vimpact < Vpest — 20 — SCOT€test = SCOTE€max (3)

Vimpact > Vtest — 20 — SCOT €test = 0 (4)

The maximum score (score,,q.) for each test is defined
in Table m Each test must be carried out at least three times,
and the impact speed (Vimpact) Will be the arithmetic mean
of the result obtained in each test. The final score is the
arithmetic mean of the scores obtained in each scenario for
the different weather conditions.

V. OUR ENVIRONMENT

(b) Night-time

—
M :
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(c) Rainy weather (d) Foggy weather

Fig. 5: Drivers view under different weather conditions

We have elaborated the scenarios described in Section [[V]
using CARLA ScenarioRunner [27], which allows to create
complex scenarios. These scenarios have been implemented
under different weather conditions, in order to evaluate how
environmental factors affect sensors and detection. In Fig. El



TABLE II: CPNA Results

CPNA
Day Night Rain Fog
Utest SCOT€max Vimpact score Vimpact score Vimpact score Vimpact score
10 km/h 1.00 0.0 km/h 1.00 0.0 km/h 1.00 0.0 km/h 1.00 0.0 km/h 1.00
20 km/h 1.00 0.0 km/h 1.00 0.0 km/h 1.00 0.0 km/h 1.00 0.0 km/h 1.00
30 km/h 2.00 0.0 km/h 2.00 4.62 km/h 1.69 6.74 km/h 1.55 8.36 km/h 1.44
40 km/h 3.00 0.0 km/h 3.00 9.73 km/h 2.27 12.84 km/h 2.04 19.52 km/h 1.54
50 km/h 2.00 19.14 km/h 2.00 27.41 km/h 2.00 35.66 km/h 0.00 49.38 km/h 0.00
60 km/h 1.00 42.93 km/h 0.00 43.67 km/h 0.00 51.37 km/h 0.00 60.04 km/h 0.00
Total | 1000 | 9.00 | 796 | 550 | 298

we present the simulated CPNA scenario for four weather
conditions.

For the implementation of these scenarios we use the
OpenScenario standard supported by ScenarioRunner, that
provides an execution engine for CARLA. The vehicle, the
pedestrian and all the variables that can be modified accom-
plish the Euro-NCAP requirements. We vary the weather
conditions, the pedestrian position and walking velocity. Also
the starting walking distance is adequate depending on the
vehicle speed.

CARLA provides a bunch of pedestrian textures, but
none of them matches the dummy appearance, so we have
modified the textures using the Unreal Engine [28] editor in
order to reach the specifications detailed in Section [[V-B

VI. RESULTS

Since the Techs4AgeCar project started in 2019 it has been
under continuous testing. However, our goal in this work
goes further, we aim to validate our architecture in a more
detailed way. Therefore, in this section, we present the results
obtained under the established protocol.

First, we analyse the temporal response for the CPNA
scenario using two graphics, evaluating the architecture for
different ego-vehicle velocities (Fig. [6) and for different
weather conditions (Fig. [7). Then, we present the results
obtained for the CPNA scenario summarized in Table [
Finally, we evaluate our system for CPNA scenario and
CPFA scenario by calculating its score in Table
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Fig. 6: Time history for sunny weather CPNA scenario

Fig.[6]represents a time diagram of individual tests running
different velocities. Ty corresponds with the moment the
vehicle either stops or collides with the pedestrian. The
collision is avoided from 10km/h to 40km/h and mitigated
for higher velocities. The instant when a predicted collision
is detected and a stop command is sent to the vehicle is
represented by a cross for each curve.
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Fig. 7: Time history for different weather conditions at 50
km/h

As we mentioned before, we propose a camera based
perception system, expected to have a worse performance
being affected by adverse climatic conditions. The tests
presented in Fig. [/} where a time diagram of individual tests
running under different weather conditions at a velocity of
50km/h is represented, confirm this hypothesis.

The system response is slightly worse at night and with
rain; and it barely mitigate the collision with fog. Here, T}
corresponds with the moment the vehicle collides with the
pedestrian. The instant when a pedestrian detection takes
place is represented by a dot for each curve and the cross
represents the instant when a predicted collision is detected
and a stop command is sent to the vehicle.

The test simulation results of the CPNA scenarios are
summarized in Table |IlIl As mentioned before, we use a cam-
era based detection method, this explains the slightly worse
results while evaluating the night, rain and fog scenarios.

The global score obtained by our autonomous navigation
architecture is shown in Table The higher pedestrian
speed of CPFA scenario in comparison with the CPNA



scenario generates worse results for the former one.

TABLE III: Final Results

Scenario || Day | Night | Rain | Fog Scenario Score
CPNA 9.00 | 7.96 5.59 | 4.98 6.88
CPFA 6.29 | 5.69 396 | 3.12 4.77
TOTAL [[ 7.65 ] 6.83 [ 477 [ 405 ]| 5.82

VII. CONCLUSIONS

A validation method of a self-driving architecture for
unexpected pedestrian scenario following the Euro-NCAP
standard has been presented in this paper.

The implemented protocol consisted on the study of the
scenarios proposed by Euro-NCAP, adapting the specifica-
tions to a general navigation architecture, where changes
in the weather are considered in the final score. Because
of this, we have decided to bring our scenario to CARLA,
which allows us to simulate different environments. Results
obtained by our architecture for different ego-vehicle speed
and weather conditions are exposed and can be used as a
baseline for comparison with other frameworks.

We have found some aspects of our architecture that have
to be improved by testing it with the proposed scenario.
These improvements will help our system to have better
performance in more complex autonomous driving environ-
ments.

Implementation of new scenarios and additional weather
conditions in simulation, as well as test validations for them
in simulation and in a real environment will be done in a
near future.
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